login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215593
Number of permutations of n indistinguishable copies of 1..7 with every partial sum <= the same partial sum averaged over all permutations.
2
1, 1001, 71892912, 13126885205000, 3627155158988429250, 1267664556730792079292048, 515544601327354412382720479328, 233099041543988273824859604028713600, 113972303622279852972722869873689584148750, 59182016901859077504525075283397206729638923750
OFFSET
0,2
LINKS
EXAMPLE
a(1) = 1001: (1,2,3,4,5,6,7), (1,2,3,4,5,7,6), ..., (4,3,5,2,1,7,6), (4,3,5,2,6,1,7).
MAPLE
b:= proc(x, y, z, u, v, w, h) option remember; local n, g;
n:= x+y+z+u+v+w+h; g:= x+2*y+3*z+4*u+5*v+6*w+7*h -8*(n-1)/2;
`if`(n<2, 1, `if`(x>0 and 1<=g, b(x-1, y, z, u, v, w, h), 0)+
`if`(y>0 and 2<=g, b(x, y-1, z, u, v, w, h), 0)+
`if`(z>0 and 3<=g, b(x, y, z-1, u, v, w, h), 0)+
`if`(u>0 and 4<=g, b(x, y, z, u-1, v, w, h), 0)+
`if`(v>0 and 5<=g, b(x, y, z, u, v-1, w, h), 0)+
`if`(w>0 and 6<=g, b(x, y, z, u, v, w-1, h), 0)+
`if`(h>0 and 7<=g, b(x, y, z, u, v, w, h-1), 0))
end:
a:= n-> b(n$7):
seq(a(n), n=0..4);
CROSSREFS
Row n=7 of A215561.
Sequence in context: A097659 A295462 A143906 * A204575 A139105 A262596
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 16 2012
STATUS
approved