login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215595
Number of strings of length n, formed from the 26-letter English alphabet, which contain the substring xy.
1
0, 0, 1, 52, 2027, 70226, 2280825, 71112600, 2155562551, 64005323902, 1870809923477, 54006556365476, 1543466751232275, 43746473462661450, 1231293799939647601, 34451045198171912752, 959005856055827234927, 26576960554539062120726, 733650711461388661963725
OFFSET
0,4
FORMULA
a(n) = 26*a(n-1) + 26^(n-2) - a(n-2).
a(n) = 52*a(n-1) - 677*a(n-2) + 26*a(n-3). - Charles R Greathouse IV, Aug 16 2012
G.f.: x/(1 - 52*x + 677*x^2 - 26*x^3). - Alexander R. Povolotsky, Aug 16 2012
a(n) = (1/168)*(13 +2*sqrt(42))^(-n)*(-(84+13*sqrt(42))*(13+2*sqrt(42))^(2*n) + 168*(338+52*sqrt(42))^n-84+13*sqrt(42)). - Alexander R. Povolotsky, Aug 16 2012
a(n) = Sum_{j=1..n} (-1)^(j+1) * B(n,j), where B(n,j) is the number of ways to place k occurrences of xy in a string of length n, and then choosing arbitrary letters for the n - 2k remaining positions. B(n,j) = product((n-i),i=j..(2*j-1)) / j! * 26^(n-2*j).
EXAMPLE
For n = 2, the only such string is xy. For n = 3, there are 26 strings of the form *xy and 26 of the form xy*. For n = 4, there are 26^2 of each of the forms xy**, *xy* and **xy, but we double count xyxy, so the answer for n=4 is 3*26^2 - 1 = 2027.
MATHEMATICA
Join[{0}, CoefficientList[Series[x/(1 - 52*x + 677*x^2 - 26*x^3), {x, 0, 50}], x]] (* G. C. Greubel, Feb 26 2017 *)
PROG
(PARI) x='x+O('x^50); concat([0, 0], Vec(x/(1 - 52*x + 677*x^2 - 26*x^3))) \\ G. C. Greubel, Feb 26 2017
CROSSREFS
Cf. A186314 (same problem for ternary strings).
Sequence in context: A188389 A169997 A342898 * A134552 A004296 A097837
KEYWORD
nonn,easy
AUTHOR
David Kofoed Wind, Aug 16 2012
STATUS
approved