login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215561
Number A(n,k) of permutations of k indistinguishable copies of 1..n with every partial sum <= the same partial sum averaged over all permutations; square array A(n,k), n>=0, k>=0, read by antidiagonals.
25
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 5, 30, 7, 1, 1, 1, 14, 420, 403, 35, 1, 1, 1, 42, 6930, 40350, 18720, 139, 1, 1, 1, 132, 126126, 5223915, 19369350, 746192, 1001, 1, 1, 1, 429, 2450448, 783353872, 27032968200, 9212531290, 71892912, 5701, 1
OFFSET
0,13
COMMENTS
"Late-growing permutations" were first defined by R. H. Hardin in A147681 and 18 related sequences. David Scambler observed that the set of orthogonal sequences includes A000108 and A007004, and he asked for the other orthogonal sequences, see link below.
"Early-growing permutations" with every partial sum >= the same partial sum averaged over all permutations define the same sequences.
Conjecture: Row r > 1 is asymptotic to c(r) * r^(r*n) / (Pi^((r-1)/2) * n^((r+1)/2)), where c(r) are a constants. - Vaclav Kotesovec, Sep 07 2016
LINKS
David Scambler et al., A147681 Late-growing permutations and follow-up messages on the SeqFan list, Aug 10 2012
EXAMPLE
A(2,2) = 2: (1,1,2,2), (1,2,1,2).
A(2,3) = 5: (1,1,1,2,2,2), (1,1,2,1,2,2), (1,1,2,2,1,2), (1,2,1,1,2,2), (1,2,1,2,1,2).
A(3,1) = 3: (1,2,3), (1,3,2), (2,1,3).
a(4,1) = 7: (1,2,3,4), (1,2,4,3), (1,3,2,4), (1,4,2,3), (2,1,3,4), (2,1,4,3), (2,3,1,4).
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 1, 2, 5, 14, 42, ...
1, 3, 30, 420, 6930, 126126, ...
1, 7, 403, 40350, 5223915, 783353872, ...
1, 35, 18720, 19369350, 27032968200, 44776592395920, ...
MAPLE
b:= proc(l) option remember; local m, n, g;
m, n:= nops(l), add(i, i=l);
g:= add(i*l[i], i=1..m)-(m+1)/2*(n-1);
`if`(n<2, 1, add(`if`(l[i]>0 and i<=g,
b(subsop(i=l[i]-1, l)), 0), i=1..m))
end:
A:= (n, k)-> b([k$n]):
seq(seq(A(n, d-n), n=0..d), d=0..10);
MATHEMATICA
b[l_] := b[l] = Module[{m, n, g}, {m, n} = {Length[l], Total[l]}; g = Sum[i*l[[i]], {i, 1, m}] - (m+1)/2*(n-1); If[n < 2, 1, Sum[If[l[[i]] > 0 && i <= g, b[ReplacePart[l, i -> l[[i]] - 1]], 0], {i, 1, m}]]]; a[n_, k_] := b[Array[k&, n]]; Table [Table [a[n, d-n], {n, 0, d}], {d, 0, 9}] // Flatten (* Jean-François Alcover, Dec 06 2013, translated from Maple *)
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 16 2012
STATUS
approved