login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214689
E.g.f. satisfies: A(x) = exp( 2*x*Catalan(x*A(x)) ), where Catalan(x) = (1-sqrt(1-4*x))/(2*x) is the g.f. of A000108.
3
1, 2, 8, 80, 1360, 32352, 989824, 37019264, 1636370432, 83464921088, 4825001503744, 311748850464768, 22263047494942720, 1741317007049007104, 148042703132414148608, 13593236125606306316288, 1340587859012582977110016, 141329649926949217139294208
OFFSET
0,2
LINKS
FORMULA
E.g.f. satisfies:
(1) A(x) = exp(2*F(x)) where F(x) = x + F(x)^2*exp(2*F(x)) is the e.g.f. of A214688.
(2) A(x) = Sum_{n>=0} a(n)*x^n/n!, where
a(n) = Sum_{k=0..n} n! * (n-k+1)^(k-1)*2^k/k! * C(2*n-k,n-k)*k/(2*n-k).
(3) Let A(x)^m = Sum_{n>=0} a(n,m)*x^n/n!, then
a(n,m) = Sum_{k=0..n} (m*k*n!/(k!*(2*n-k))) * C(2*n-k,n-k) *(n-k+m)^(k-1)*2^k
...
O.g.f.: A(x) = 1 + Sum_{n>=1} 2*(2*n-2)!/(n-1)! * x^n/(1 - 2*n*x)^(2*n-1).
a(n) ~ n^(n-1) * sqrt((r*s^3*(1-6*r*s+8*r^2*s^2)) / (1 + (1-8*r-2*r^2)*s + 8*r*(-1+2*r+r^2)*s^2 + 4*r^2*(4+r)*s^3)) / (exp(n) * r^n), where s = 1.63431733254223384712742331758... is the root of the equation 1/4*log(s)*(2-s*log(s)) = (-2*s-s^2 + sqrt(2*s+5*s^2+4*s^3+s^4))/(2*s), and r = 1/4*log(s)*(2-s*log(s)) = 0.1470215075962238276175169526... - Vaclav Kotesovec, Feb 26 2014
EXAMPLE
E.g.f.: A(x) = 1 + 2*x + 8*x^2/2! + 80*x^3/3! + 1360*x^4/4! + 32352*x^5/5! +...
log(A(x))/(2*x) = 1 + x*A(x) + 2*x^2*A(x)^2 + 5*x^3*A(x)^3 + 14*x^4*A(x)^4 +...+ A000108(n)*x^n*A(x)^n +...
log(A(x))/2 = x + 2*x^2/2! + 24*x^3/3! + 408*x^4/4! + 9760*x^5/5! +...+ A214688(n)*x^n/n! +...
Ordinary Generating Function:
O.g.f.: 1 + 2*x + 8*x^2 + 80*x^3 + 1360*x^4 + 32352*x^5 + 989824*x^6 +...
O.g.f.: 1 + 2*1*x/(1-2*x) + 2*2*x^2/(1-4*x)^3 + 2*6*2!*x^3/(1-6*x)^5 + 2*20*3!*x^4/(1-8*x)^7 + 2*70*4!*x^5/(1-10*x)^9 + 2*252*5!*x^6/(1-12*x)^11 +...+ 2*(2*n-2)!/(n-1)!*x^n/(1-2*n*x)^(2*n-1) +...
MATHEMATICA
Flatten[{1, Table[Sum[n!*2^k/k!*(n-k+1)^(k-1)*Binomial[2*n-k, n-k] *k/(2*n-k), {k, 0, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Feb 26 2014 *)
PROG
(PARI) {a(n, m=1)=if(n==0, 1, sum(k=0, n, n!*2^k/k!*m*(m+n-k)^(k-1)*binomial(2*n-k, n-k)*k/(2*n-k)))}
(PARI) {a(n, m=1)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(2*(1-sqrt(1-4*x*A))/(2*A))); n!*polcoeff(A^m, n)}
(PARI) /* From o.g.f.: */
{a(n)=polcoeff(1+2*sum(m=1, n, (2*m-2)!/(m-1)!*x^m/(1-2*m*x+x*O(x^n))^(2*m-1)), n)}
for(n=0, 25, print1(a(n), ", "))
(Magma)
A214689:= func< n | n le 1 select n+1 else (&+[k*Binomial(n, k)*Binomial(2*n-k, n-k)*Factorial(n-k)*2^k*(n-k+1)^(k-1)/(2*n-k): k in [0..n]]) >;
[A214689(n): n in [0..30]]; // G. C. Greubel, Mar 07 2024
(SageMath)
def A214689(n): return n+1 if n<2 else sum(k*binomial(n, k)*binomial(2*n-k, n-k)*factorial(n-k)*2^k*(n-k+1)^(k-1)/(2*n-k) for k in range(n+1))
[A214689(n) for n in range(31)] # G. C. Greubel, Mar 07 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 01 2012
STATUS
approved