login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202999
Expansion of e.g.f. A(x) satisfying A(x) = Sum_{n>=0} (A(x)^n + 1)^n * x^n/n!.
7
1, 2, 8, 80, 1392, 34352, 1108576, 44340704, 2119928320, 118111781888, 7524579815424, 540141484897280, 43182173208678400, 3808622859938226176, 367715812648914460672, 38610662734158029938688, 4384921058923036753723392, 536091721631513000647393280
OFFSET
0,2
FORMULA
E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies the following.
(1) A(x) = Sum_{n>=0} (A(x)^n + 1)^n * x^n/n!.
(2) A(x) = Sum_{n>=0} A(x)^(n^2) * exp(x*A(x)^n) * x^n/n!.
a(n) = Sum_{k=0..n} A361540(n,k). - Paul D. Hanna, Mar 20 2023
EXAMPLE
E.g.f.: A(x) = 1 + 2*x + 8*x^2/2! + 80*x^3/3! + 1392*x^4/4! + 34352*x^5/5! +...
where the e.g.f. satisfies following series identity:
A(x) = 1 + (A(x)+1)*x + (A(x)^2+1)^2*x^2/2! + (A(x)^3+1)^3*x^3/3! + (A(x)^4+1)^4*x^4/4! +...
A(x) = exp(x) + A(x)*exp(x*A(x))*x + A(x)^4*exp(x*A(x)^2)*x^2/2! + A(x)^9*exp(x*A(x)^3)*x^3/3! + A(x)^16*exp(x*A(x)^4)*x^4/4! +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(k=0, n, (A^k+1+x*O(x^n))^k*x^k/k!)); n!*polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(k=0, n, A^(k^2)*exp(A^k*x+x*O(x^n))*x^k/k!)); n!*polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 27 2011
STATUS
approved