login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214066
a(n) = floor( (3/2)*floor(5*n/2) ).
3
0, 3, 7, 10, 15, 18, 22, 25, 30, 33, 37, 40, 45, 48, 52, 55, 60, 63, 67, 70, 75, 78, 82, 85, 90, 93, 97, 100, 105, 108, 112, 115, 120, 123, 127, 130, 135, 138, 142, 145, 150, 153, 157, 160, 165, 168, 172, 175, 180, 183, 187, 190
OFFSET
0,2
COMMENTS
Also, numbers that are congruent to {0,3,7,10} mod 15. - Bruno Berselli, Jul 19 2012
FORMULA
From Bruno Berselli, Jul 19 2012: (Start)
G.f.: x*(3+4*x+3*x^2+5*x^3)/((1+x)*(1-x)^2*(1+x^2)).
a(n) = (30*n+2*i^((n-1)*n)+3*(-1)^n-5)/8, where i=sqrt(-1). (End)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Wesley Ivan Hurt, Jun 04 2016
MAPLE
A214066:=n->floor((3/2)*floor(5*n/2)): seq(A214066(n), n=0..100); # Wesley Ivan Hurt, Jun 04 2016
MATHEMATICA
f[n_]:=Floor[(3/2)Floor[5n/2]]; t=Table[f[n], {n, 0, 70}]
PROG
From Bruno Berselli, Jul 19 2012: (Start)
(Magma) [n: n in [0..190] | n mod 15 in [0, 3, 7, 10]];
(Maxima) makelist((30*n+2*%i^((n-1)*n)+3*(-1)^n-5)/8, n, 0, 51);
(PARI) concat(0, Vec((3+4*x+3*x^2+5*x^3)/((1+x)*(1-x)^2*(1+x^2))+O(x^51))) (End)
CROSSREFS
Cf. A214068.
Sequence in context: A224880 A043722 A288175 * A120738 A190306 A189530
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 18 2012
STATUS
approved