login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = floor( (3/2)*floor(5*n/2) ).
3

%I #14 Sep 08 2022 08:46:02

%S 0,3,7,10,15,18,22,25,30,33,37,40,45,48,52,55,60,63,67,70,75,78,82,85,

%T 90,93,97,100,105,108,112,115,120,123,127,130,135,138,142,145,150,153,

%U 157,160,165,168,172,175,180,183,187,190

%N a(n) = floor( (3/2)*floor(5*n/2) ).

%C Also, numbers that are congruent to {0,3,7,10} mod 15. - _Bruno Berselli_, Jul 19 2012

%H Clark Kimberling, <a href="/A214066/b214066.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1).

%F From _Bruno Berselli_, Jul 19 2012: (Start)

%F G.f.: x*(3+4*x+3*x^2+5*x^3)/((1+x)*(1-x)^2*(1+x^2)).

%F a(n) = (30*n+2*i^((n-1)*n)+3*(-1)^n-5)/8, where i=sqrt(-1). (End)

%F a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - _Wesley Ivan Hurt_, Jun 04 2016

%p A214066:=n->floor((3/2)*floor(5*n/2)): seq(A214066(n), n=0..100); # _Wesley Ivan Hurt_, Jun 04 2016

%t f[n_]:=Floor[(3/2)Floor[5n/2]]; t=Table[f[n], {n,0,70}]

%o From _Bruno Berselli_, Jul 19 2012: (Start)

%o (Magma) [n: n in [0..190] | n mod 15 in [0,3,7,10]];

%o (Maxima) makelist((30*n+2*%i^((n-1)*n)+3*(-1)^n-5)/8, n, 0, 51);

%o (PARI) concat(0, Vec((3+4*x+3*x^2+5*x^3)/((1+x)*(1-x)^2*(1+x^2))+O(x^51))) (End)

%Y Cf. A214068.

%K nonn,easy

%O 0,2

%A _Clark Kimberling_, Jul 18 2012