OFFSET
1,2
COMMENTS
LINKS
Clark Kimberling, Antidiagonals n=1..80, flattened
FORMULA
T(n,k) = 3*T(n,k-1) - 2*T(n,k-2) - 2*T(n,k-3) + 3*T(n,k-4) - T(n,k-5).
G.f. for row n: f(x)/g(x), where f(x) = x*(1 + [n/2] + d(n)*x - [(n+1)/2]*x^2), g(x) = (1 + x)*(1 - x)^4, d(n) = (n mod 2) and [] = floor.
EXAMPLE
Northwest corner (the array is read by falling antidiagonals):
1...4....9....17...28...43....62
2...6....13...23...37...55....78
2...7....15...27...43...64....90
3...9....19...33...52...76....106
3...10...21...37...58...85....118
4...12...25...43...67...97....134
4...13...27...47...73...106...146
MATHEMATICA
b[n_] := n; c[n_] := 1 + Floor[n/2];
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213778 *)
Table[t[n, n], {n, 1, 40}] (* A213779 *)
s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
Table[s[n], {n, 1, 50}] (* A213780 *)
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, Jun 21 2012
STATUS
approved