OFFSET
1,2
COMMENTS
LINKS
Clark Kimberling, Antidiagonals n=1..80, flattened
FORMULA
T(n,k) = 2*T(n,k-1) + T(n,k-2) - 2*T(n,k-3) - T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = F(n-1) + F(n-2)*x and g(x) = (1 - x - x^2)^2.
T(n,k) = (k*Lucas(n+k+1) + Lucas(n)*Fibonacci(k))/5. - Ehren Metcalfe, Jul 10 2019
EXAMPLE
Northwest corner (the array is read by falling antidiagonals):
1....3....7....15....30....58
2....5....12...25....50....96
3....8....19...40....80....154
5....13...31...65....130...250
8....21...50...105...210...404
13...34...81...170...340...654
MATHEMATICA
b[n_] := Fibonacci[n]; c[n_] := Fibonacci[n + 1];
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213777 *)
Table[t[n, n], {n, 1, 40}] (* A001870 *)
s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
Table[s[n], {n, 1, 50}] (* A152881 *)
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, Jun 21 2012
STATUS
approved