login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206561
Triangle read by rows: T(n,k) = total sum of parts >= k in all partitions of n.
11
1, 4, 2, 9, 5, 3, 20, 13, 7, 4, 35, 23, 15, 9, 5, 66, 47, 31, 19, 11, 6, 105, 75, 53, 35, 23, 13, 7, 176, 131, 93, 66, 42, 27, 15, 8, 270, 203, 151, 106, 74, 49, 31, 17, 9, 420, 323, 241, 178, 126, 86, 56, 35, 19, 10, 616, 477, 365, 272, 200, 140, 98, 63, 39, 21, 11
OFFSET
1,2
COMMENTS
From Omar E. Pol, Mar 18 2018: (Start)
In the n-th row of the triangle the first differences together with its last term give the n-th row of triangle A138785 (see below):
Row..........: 1 2 3 4 5 ...
--- ---- ------- ------------ ----------------
This triangle: 1; 4, 2; 9, 5, 3; 20, 13, 7, 4; 35, 23, 15, 9, 5; ...
| | /| | /| /| | / | /| /| | / | / | /| /|
| |/ | |/ |/ | |/ |/ |/ | |/ |/ |/ |/ |
A138785......: 1; 2, 2; 4, 2, 3; 7, 6, 3, 4; 12, 8, 6, 4, 5; ... (End)
LINKS
FORMULA
T(n,n) = n, T(n,k) = T(n,k+1) + k * A066633(n,k) for k < n.
T(n,k) = Sum_{i=k..n} A138785(n,i).
EXAMPLE
Triangle begins:
1;
4, 2;
9, 5, 3;
20, 13, 7, 4;
35, 23, 15, 9, 5;
66, 47, 31, 19, 11, 6;
105, 75, 53, 35, 23, 13, 7;
...
MATHEMATICA
Table[With[{s = IntegerPartitions[n]}, Table[Total@ Flatten@ Map[Select[#, # >= k &] &, s], {k, n}]], {n, 11}] // Flatten (* Michael De Vlieger, Mar 19 2018 *)
CROSSREFS
Columns 1-2 give A066186, A194552.
Right border gives A000027.
Row sums give A066183. - Omar E. Pol, Mar 19 2018
Both A180681 and A299768 have the same row sums as this triangle. - Omar E. Pol, Mar 21 2018
Sequence in context: A091450 A163253 A191663 * A008831 A365378 A289506
KEYWORD
nonn,tabl
AUTHOR
Omar E. Pol, Feb 14 2012
EXTENSIONS
More terms from Alois P. Heinz, Feb 14 2012
STATUS
approved