login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) = total sum of parts >= k in all partitions of n.
11

%I #45 Mar 21 2018 17:14:04

%S 1,4,2,9,5,3,20,13,7,4,35,23,15,9,5,66,47,31,19,11,6,105,75,53,35,23,

%T 13,7,176,131,93,66,42,27,15,8,270,203,151,106,74,49,31,17,9,420,323,

%U 241,178,126,86,56,35,19,10,616,477,365,272,200,140,98,63,39,21,11

%N Triangle read by rows: T(n,k) = total sum of parts >= k in all partitions of n.

%C From _Omar E. Pol_, Mar 18 2018: (Start)

%C In the n-th row of the triangle the first differences together with its last term give the n-th row of triangle A138785 (see below):

%C Row..........: 1 2 3 4 5 ...

%C --- ---- ------- ------------ ----------------

%C This triangle: 1; 4, 2; 9, 5, 3; 20, 13, 7, 4; 35, 23, 15, 9, 5; ...

%C | | /| | /| /| | / | /| /| | / | / | /| /|

%C | |/ | |/ |/ | |/ |/ |/ | |/ |/ |/ |/ |

%C A138785......: 1; 2, 2; 4, 2, 3; 7, 6, 3, 4; 12, 8, 6, 4, 5; ... (End)

%H Alois P. Heinz, <a href="/A206561/b206561.txt">Rows n = 1..141, flattened</a>

%F T(n,n) = n, T(n,k) = T(n,k+1) + k * A066633(n,k) for k < n.

%F T(n,k) = Sum_{i=k..n} A138785(n,i).

%e Triangle begins:

%e 1;

%e 4, 2;

%e 9, 5, 3;

%e 20, 13, 7, 4;

%e 35, 23, 15, 9, 5;

%e 66, 47, 31, 19, 11, 6;

%e 105, 75, 53, 35, 23, 13, 7;

%e ...

%t Table[With[{s = IntegerPartitions[n]}, Table[Total@ Flatten@ Map[Select[#, # >= k &] &, s], {k, n}]], {n, 11}] // Flatten (* _Michael De Vlieger_, Mar 19 2018 *)

%Y Columns 1-2 give A066186, A194552.

%Y Right border gives A000027.

%Y Cf. A138785, A181187.

%Y Row sums give A066183. - _Omar E. Pol_, Mar 19 2018

%Y Both A180681 and A299768 have the same row sums as this triangle. - _Omar E. Pol_, Mar 21 2018

%K nonn,tabl

%O 1,2

%A _Omar E. Pol_, Feb 14 2012

%E More terms from _Alois P. Heinz_, Feb 14 2012