OFFSET
0,1
COMMENTS
See A202348 for a guide to related sequences. The Mathematica program includes a graph.
Also the only solution of x=I^(x*I), since I^I = exp(-Pi/2). Also the infinite power tower (tetration) of I^I, i.e., the convergent sequence I^(I*I^(I*I^(...(I*I^I)...))). Also LambertW(Pi/2)/(Pi/2). - Stanislav Sykora, Nov 06 2013
LINKS
Stanislav Sykora, Table of n, a(n) for n = 0..2000
Steven R. Finch, Tauberian Constants, August 30, 2004 [Cached copy, with permission of the author]
EXAMPLE
x=0.474540999512651123017467944048212451149107680...
MATHEMATICA
u = -Pi/2; v = 0;
f[x_] := x; g[x_] := E^(u*x + v)
Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110]
RealDigits[r] (* A202501 *)
RealDigits[ 2*ProductLog[Pi/2]/Pi, 10, 99] // First (* Jean-François Alcover, Feb 27 2013 *)
PROG
(PARI) lambertw(Pi/2)/(Pi/2) \\ Stanislav Sykora, Nov 06 2013
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 20 2011
STATUS
approved