login
A195362
Decimal expansion of normalized Philo sum, Philo(ABC,I), where I=incenter of a 2,5,sqrt(29) right triangle ABC.
5
4, 7, 4, 6, 2, 8, 7, 7, 4, 7, 5, 8, 4, 2, 7, 0, 5, 1, 6, 4, 7, 1, 1, 9, 3, 1, 1, 3, 9, 9, 5, 1, 6, 6, 8, 0, 4, 8, 7, 6, 6, 6, 3, 6, 8, 5, 9, 7, 0, 9, 3, 2, 6, 8, 8, 7, 1, 3, 8, 9, 6, 7, 5, 8, 4, 3, 8, 6, 6, 8, 5, 9, 6, 5, 5, 7, 5, 2, 0, 7, 3, 2, 7, 5, 7, 2, 8, 8, 3, 5, 4, 7, 1, 9, 8, 2, 9, 4, 9, 5
OFFSET
0,1
COMMENTS
See A195284 for definitions and a general discussion.
EXAMPLE
Philo(ABC,I)=0.4746287747584270516471193113995166804876...
MATHEMATICA
a = 2; b = 5; c = Sqrt[29]; f = 2 a*b/(a + b + c);
x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ]
x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ]
x3 = f*Sqrt[2]
N[x1, 100]
RealDigits[%] (* (A) A195359 *)
N[x2, 100]
RealDigits[%] (* (B) A195360 *)
N[x3, 100]
RealDigits[%] (* (C) A195361 *)
N[(x1 + x2 + x3)/(a + b + c), 100]
RealDigits[%] (* Philo(ABC, I) A195362 *)
CROSSREFS
Cf. A195284.
Sequence in context: A019735 A202501 A358189 * A106739 A112677 A010712
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Sep 16 2011
STATUS
approved