login
A201904
Decimal expansion of the greatest x satisfying x^2+4x+1=e^x.
3
3, 1, 6, 4, 1, 3, 7, 1, 1, 1, 6, 3, 7, 9, 3, 8, 3, 2, 5, 2, 8, 4, 4, 6, 6, 9, 6, 6, 7, 3, 8, 9, 2, 1, 5, 9, 6, 5, 6, 1, 5, 5, 3, 9, 9, 2, 8, 5, 9, 5, 4, 4, 6, 8, 2, 9, 4, 2, 9, 6, 9, 5, 3, 8, 4, 1, 0, 1, 9, 5, 2, 1, 7, 6, 4, 7, 0, 9, 8, 9, 5, 4, 3, 6, 1, 5, 6, 7, 8, 3, 8, 2, 0, 9, 3, 2, 1, 8, 6
OFFSET
1,1
COMMENTS
See A201741 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least: -3.73890200966899672518020580953927823014766...
greatest: 3.164137111637938325284466966738921596561...
MATHEMATICA
a = 1; b = 4; c = 1;
f[x_] := a*x^2 + b*x + c; g[x_] := E^x
Plot[{f[x], g[x]}, {x, -4, 3.3}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -3.8, -3.7}, WorkingPrecision -> 110]
RealDigits[r] (* A201903 *)
r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.2}, WorkingPrecision -> 110]
RealDigits[r] (* A201904 *)
CROSSREFS
Cf. A201741.
Sequence in context: A126191 A070883 A120029 * A133110 A286158 A185915
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 06 2011
STATUS
approved