login
A185915
Accumulation array of A185914, by antidiagonals.
3
1, 3, 1, 6, 4, 1, 10, 9, 4, 1, 15, 16, 10, 4, 1, 21, 25, 19, 10, 4, 1, 28, 36, 31, 20, 10, 4, 1, 36, 49, 46, 34, 20, 10, 4, 1, 45, 64, 64, 52, 35, 20, 10, 4, 1, 55, 81, 85, 74, 55, 35, 20, 10, 4, 1, 66, 100, 109, 100, 80, 56, 35, 20, 10, 4, 1, 78, 121, 136, 130, 110, 83, 56, 35, 20, 10, 4, 1, 91, 144, 166, 164, 145, 116, 84, 56, 35, 20, 10, 4, 1, 105, 169, 199, 202, 185, 155, 119, 84, 56, 35, 20, 10, 4, 1
OFFSET
1,2
COMMENTS
A member of the accumulation chain ... < A185916 < A185914 < A185915 < ...
(See A144112 for definitions of weight array and accumulation array.)
FORMULA
T(n,k) = C(k+2,3) if k<=n; T(n,k) = k*(k+2-n)/2 if k>n; k>=1, n>=1.
EXAMPLE
Northwest corner:
1....3....6....10....15....21....28
1....4....9....16....25....36....49
1....4....10...19....31....46....64
1....4....10...20....34....52....74
1....4....10...20....35....55....80
1....4....10...20....35....56....83
row 1: A000217 (triangular numbers)
row 2: A000290 (squares)
row 3: A005448 (centered triangular numbers)
row 4: A005893
row 5: A062985
Limit of rows: A000292 (tetrahedral numbers)
MATHEMATICA
f[n_, 0] := 0; f[0, k_] := 0; f[n_, k_] := k - n + 1; f[n_, k_] := 0 /; k < n; s[n_, k_] := Sum[f[i, j], {i, 1, n}, {j, 1, k}]; Table[s[n - k + 1, k], {n, 50}, {k, n, 1, -1}] // Flatten
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 06 2011
STATUS
approved