login
A197831
Decimal expansion of greatest x having x^2-3x=-cos(x).
3
3, 2, 9, 9, 3, 2, 9, 1, 4, 5, 0, 3, 6, 2, 8, 4, 6, 9, 3, 1, 5, 8, 2, 1, 1, 4, 0, 1, 8, 0, 7, 9, 1, 0, 2, 4, 0, 8, 2, 0, 3, 6, 9, 7, 1, 1, 9, 9, 1, 5, 9, 0, 3, 9, 0, 9, 4, 5, 8, 8, 0, 9, 1, 7, 6, 9, 0, 2, 0, 5, 7, 1, 3, 7, 8, 5, 5, 3, 1, 1, 5, 1, 2, 2, 5, 6, 0, 0, 0, 7, 6, 4, 3, 7, 2, 7, 1, 1, 3
OFFSET
1,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: 0.3544963674136767044773458959502707334...
greatest x: 3.2993291450362846931582114018079102408...
MATHEMATICA
a = 1; b = -3; c = -1;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -1, 4}]
r1 = x /. FindRoot[f[x] == g[x], {x, -.4, -.3}, WorkingPrecision -> 110]
RealDigits[r1] (* A197825 *)
r2 = x /. FindRoot[f[x] == g[x], {x, 3.2, 3.3}, WorkingPrecision -> 110]
RealDigits[r2] (* A197831 *)
CROSSREFS
Cf. A197737.
Sequence in context: A374299 A199455 A287768 * A244995 A152049 A246788
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 20 2011
STATUS
approved