login
A197825
Decimal expansion of least x having x^2-3x=-cos(x).
3
3, 5, 4, 4, 9, 6, 3, 6, 7, 4, 1, 3, 6, 7, 6, 7, 0, 4, 4, 7, 7, 3, 4, 5, 8, 9, 5, 9, 5, 0, 2, 7, 0, 7, 3, 3, 4, 9, 3, 4, 0, 3, 8, 7, 1, 3, 2, 9, 6, 0, 6, 8, 9, 0, 4, 8, 3, 8, 4, 1, 3, 2, 6, 3, 4, 4, 7, 5, 4, 4, 4, 3, 9, 7, 7, 4, 4, 3, 9, 6, 1, 9, 5, 8, 3, 2, 8, 8, 2, 1, 1, 2, 0, 2, 5, 4, 1, 0, 5
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: 0.3544963674136767044773458959502707334...
greatest x: 3.2993291450362846931582114018079102408...
MATHEMATICA
a = 1; b = -3; c = -1;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -1, 4}]
r1 = x /. FindRoot[f[x] == g[x], {x, -.4, -.3}, WorkingPrecision -> 110]
RealDigits[r1] (* A197825 *)
r2 = x /. FindRoot[f[x] == g[x], {x, 3.2, 3.3}, WorkingPrecision -> 110]
RealDigits[r2] (* A197831 *)
CROSSREFS
Cf. A197737.
Sequence in context: A000655 A130532 A019707 * A077861 A272647 A076308
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 20 2011
STATUS
approved