login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190002
a(n) = n + [n*s/r] + [n*t/r]; r=1, s=(sinh(1))^2, t=(cosh(1))^2.
4
4, 8, 14, 18, 22, 28, 32, 38, 42, 46, 52, 56, 60, 66, 70, 76, 80, 84, 90, 94, 100, 104, 108, 114, 118, 122, 128, 132, 138, 142, 146, 152, 156, 160, 166, 170, 176, 180, 184, 190, 194, 200, 204, 208, 214, 218, 222, 228, 232, 238, 242, 246, 252, 256, 260, 266, 270, 276, 280, 284, 290, 294, 300, 304, 308, 314, 318, 322, 328, 332, 338
OFFSET
1,1
COMMENTS
This is one of three sequences that partition the positive integers. In general, suppose that r, s, t are positive real numbers for which the sets {i/r: i>=1}, {j/s: j>=1}, {k/t: k>=1} are pairwise disjoint. Let a(n) be the rank of n/r when all the numbers in the three sets are jointly ranked. Define b(n) and c(n) as the ranks of n/s and n/t. It is easy to prove that
a(n) = n + [n*s/r] + [n*t/r],
b(n) = n + [n*r/s] + [n*t/s],
c(n) = n + [n*r/t] + [n*s/t], where []=floor.
Taking r=1, s=(sinh(1))^2, t=(cosh(1))^2 gives
LINKS
FORMULA
A190002: a(n) = n + [n*(sinh(1))^2] + [n*(cosh(1))^2].
A190003: b(n) = n + [n*(csch(1))^2] + [n*(coth(1))^2].
A005408: c(n) = 2*n - 1.
MATHEMATICA
r=1; s=Sinh[1]^2; t=Cosh[1]^2;
a[n_] := n + Floor[n*s/r] + Floor[n*t/r];
b[n_] := n + Floor[n*r/s] + Floor[n*t/s];
c[n_] := n + Floor[n*r/t] + Floor[n*s/t];
Table[a[n], {n, 1, 120}] (* A190002 *)
Table[b[n], {n, 1, 120}] (* A190003 *)
Table[c[n], {n, 1, 120}] (* A005408 *)
Table[a[n]/2, {n, 1, 120}](* A190004 *)
Table[b[n]/2, {n, 1, 120}](* A182760 *)
PROG
(PARI) for(n=1, 100, print1(n + floor(n*(sinh(1))^2) + floor(n*(cosh(1))^2), ", ")) \\ G. C. Greubel, Jan 11 2018
(Magma) [n + Floor(n*(Sinh(1))^2) + Floor(n*(Cosh(1))^2): n in [1..100]]; // G. C. Greubel, Jan 11 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 03 2011
STATUS
approved