OFFSET
0,2
COMMENTS
Note that there may be other vertices in the Galebach list of u-uniform tilings with u <= 6 that have this same coordination sequence. See the Galebach link for the complete list of A-numbers for all these tilings.
LINKS
FORMULA
Conjectures from Chai Wah Wu, Jan 28 2020: (Start)
a(n) = - 3*a(n-1) - 6*a(n-2) - 9*a(n-3) - 11*a(n-4) - 11*a(n-5) - 8*a(n-6) - 2*a(n-7) + 6*a(n-8) + 14*a(n-9) + 20*a(n-10) + 22*a(n-11) + 20*a(n-12) + 14*a(n-13) + 6*a(n-14) - 2*a(n-15) - 8*a(n-16) - 11*a(n-17) - 11*a(n-18) - 9*a(n-19) - 6*a(n-20) - 3*a(n-21) - a(n-22) for n > 23.
G.f.: (-2*x^23 - 3*x^22 - x^21 + 16*x^20 + 63*x^19 + 151*x^18 + 295*x^17 + 488*x^16 + 718*x^15 + 954*x^14 + 1158*x^13 + 1294*x^12 + 1338*x^11 + 1276*x^10 + 1130*x^9 + 922*x^8 + 690*x^7 + 470*x^6 + 287*x^5 + 155*x^4 + 71*x^3 + 26*x^2 + 7*x + 1)/((x - 1)^2*(x + 1)^2*(x^2 + 1)*(x^2 - x + 1)*(x^2 + x + 1)^2*(x^4 + x^3 + x^2 + x + 1)*(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)). (End)
CROSSREFS
KEYWORD
nonn
AUTHOR
Brian Galebach and N. J. A. Sloane, Jun 18 2018
STATUS
approved