login
A189974
Numbers n such that d(n-1) = d(n+1) = 4, where d(k) is the number of divisors of k (A000005).
3
7, 9, 34, 56, 86, 92, 94, 124, 142, 144, 160, 184, 186, 202, 204, 214, 216, 218, 220, 236, 248, 266, 300, 302, 304, 320, 322, 328, 340, 342, 392, 394, 412, 414, 416, 446, 452, 470, 472, 516, 518, 534, 536, 544, 552, 580, 582, 590, 634, 668, 670, 680, 686
OFFSET
1,1
COMMENTS
Numbers n such that n-1 and n+1 are both multiplicatively perfect numbers A007422.
LINKS
MAPLE
with(numtheory): A189974 := proc(n) option remember: local k: if(n=1)then return 7:else k:=procname(n-1)+1: do if(tau(k-1)=4 and tau(k+1)=4)then return k: fi: k:=k+1: od: fi: end: seq(A189974(n), n=1..60); # Nathaniel Johnston, May 04 2011
MATHEMATICA
Select[Range[2, 754], DivisorSigma[0, # - 1] == DivisorSigma[0, # + 1] == 4 &]
CROSSREFS
Sequence in context: A272431 A261961 A177030 * A316184 A359367 A321760
KEYWORD
nonn
AUTHOR
STATUS
approved