login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006256
a(n) = Sum_{k=0..n} binomial(3k,k)*binomial(3n-3k,n-k).
(Formerly M4229)
12
1, 6, 39, 258, 1719, 11496, 77052, 517194, 3475071, 23366598, 157206519, 1058119992, 7124428836, 47983020624, 323240752272, 2177956129818, 14677216121871, 98923498131762, 666819212874501, 4495342330033938, 30308036621747679, 204356509814519712
OFFSET
0,2
COMMENTS
The right-hand sides of several of the "Ruehr identities". - N. J. A. Sloane, Feb 20 2020
Convolution of A005809 with itself. - Emeric Deutsch, May 22 2003
REFERENCES
Allouche, J-P. "Two binomial identities of Ruehr Revisited." The American Mathematical Monthly 126.3 (2019): 217-225.
Alzer, Horst, and Helmut Prodinger. "On Ruehr's Identities." Ars Comb. 139 (2018): 247-254.
Bai, Mei, and Wenchang Chu. "Seven equivalent binomial sums." Discrete Mathematics 343.2 (2020): 111691.
M. Petkovsek et al., A=B, Peters, 1996, p. 165.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Jean-Paul Allouche, A generalization of an identity due to Kimura and Ruehr, arXiv preprint arXiv:1706.08929 [math.NT], 2017.
Jean-Paul Allouche, Two exercises of Comtet and two identities of Ruehr, arXiv preprint arXiv:1707.05751 [math.NT], 2017.
Rui Duarte and António Guedes de Oliveira, Short note on the convolution of binomial coefficients, arXiv:1302.2100 [math.CO], 2013 and J. Int. Seq. 16 (2013) #13.7.6.
Shalosh B. Ekhad, Doron Zeilberger, Some Remarks on a recent article by J.-P. Allouche, arXiv:1903.09511 [math.CO], 2019.
N, Kimura and O. G. Ruehr, Change of variable formula for definite integral. Problem E2765, Am. Math. Mnthly, 87, 1980, 307-308.
S. Meehan, A. Tefera, M. Weselcouch, A. Zeleke, Proofs of Ruehr's identities, Integers 14 (2014) A10.
D. Merlini, R. Sprugnoli and M. C. Verri, The tennis ball problem, J. Combin. Theory, A 99 (2002), 307-344 (Y_n for s=3).
FORMULA
a(n) = (3/4)*(27/4)^n*(1+c/sqrt(n)+o(n^(-1/2))) where c = (2/3)*sqrt(1/(3*Pi)) = 0.217156671956853298... More generally, a(n, m) = sum(k=0, n, C(m*k,k) *C(m*(n-k),n-k)) is asymptotic to (1/2)*m/(m-1)*(m^m/(m-1)^(m-1))^n. See A000302, A078995 for cases m=2 and 4. - Benoit Cloitre, Jan 26 2003, extended by Vaclav Kotesovec, Nov 06 2012
G.f.: 1/(1-3*z*g^2)^2, where g=g(z) is given by g=1+z*g^3, g(0)=1, i.e. (in Maple command) g := 2*sin(arcsin(3*sqrt(3*z)/2)/3)/sqrt(3*z). - Emeric Deutsch, May 22 2003
D-finite with recurrence: 6*(36*n^2-45*n+16)*a(n-1) - 81*(3*n-4)*(3*n-2)*a(n-2) - 8*n*(2*n-1)*a(n) = 0. - Vaclav Kotesovec, Oct 05 2012
From Rui Duarte and António Guedes de Oliveira, Feb 17 2013: (Start)
a(n) = sum(k=0, n, C(3*k+l,k)*C(3*(n-k)-l,n-k)) for every real number l.
a(n) = sum(k=0, n, 2^(n-k)*C(3n+1,k)).
a(n) = sum(k=0, n, 3^(n-k)*c(2n+k,k)). (End)
From Akalu Tefera, Sean Meehan, Michael Weselcouch, and Aklilu Zeleke, May 11 2013: (Start)
a(n) = sum(k=0, 2n, (-3)^k*C(3n - k, n)).
a(n) = sum(k=0, 2n, (-4)^k*C(3n + 1, 2n - k)).
a(n) = sum(k=0, n, 3^k*C(3n - k, 2n)).
a(n) = sum(k=0, n, 2^k*C(3n + 1, n - k)). (End)
a(n) = C(3*n+1,n)*Hyper2F1(1,-n,2*n+2,-2). - Peter Luschny, May 19 2015
MAPLE
a:= proc(n) option remember; `if`(n<2, 5*n+1,
((216*n^2-270*n+96) *a(n-1)
-81*(3*n-2)*(3*n-4) *a(n-2)) /(n*(16*n-8)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Nov 07 2012
MATHEMATICA
a[n_] := HypergeometricPFQ[{1/3, 2/3, 1/2-n, -n}, {1/2, 1/3-n, 2/3-n}, 1]*(3n)!/(n!*(2n)!); Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 20 2012 *)
Table[Sum[Binomial[3k, k]Binomial[3n-3k, n-k], {k, 0, n}], {n, 0, 30}] (* Harvey P. Dale, Oct 23 2013 *)
PROG
(Haskell)
a006256 n = a006256_list !! n
a006256_list = f (tail a005809_list) [1] where
f (x:xs) zs = (sum $ zipWith (*) zs a005809_list) : f xs (x : zs)
-- Reinhard Zumkeller, Sep 21 2014
(Sage)
a = lambda n: binomial(3*n+1, n)*hypergeometric([1, -n], [2*n+2], -2)
[simplify(a(n)) for n in range(20)] # Peter Luschny, May 19 2015
(PARI) a(n)=sum(k=0, n, binomial(3*k, k)*binomial(3*n-3*k, n-k)) \\ Charles R Greathouse IV, Feb 07 2017
(Magma) [&+[Binomial(3*k, k) *Binomial(3*n-3*k, n-k): k in [0..n]]:n in [0..22]]; // Vincenzo Librandi, Feb 21 2020
CROSSREFS
Sequence in context: A305289 A090018 A238809 * A052392 A370376 A357206
KEYWORD
nonn,easy,nice
STATUS
approved