OFFSET
1,2
COMMENTS
A rectangle of length L and width W is a golden rectangle if L/W = r = (1+sqrt(5))/2. The diagonal has length D = sqrt(L^2+W^2), so D/W = sqrt(r^2+1) = sqrt(r+2).
Largest root of x^4 - 5x^2 + 5. - Charles R Greathouse IV, May 07 2011
This is the case n=10 of (Gamma(1/n)/Gamma(2/n))*(Gamma((n-1)/n)/Gamma((n-2)/n)) = 2*cos(Pi/n). - Bruno Berselli, Dec 13 2012
Edge length of a pentagram (regular star pentagon) with unit circumradius. - Stanislav Sykora, May 07 2014
The ratio diagonal/side of the shortest diagonal in a regular 10-gon. - Mohammed Yaseen, Nov 04 2020
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10001
Michael Penn, On the fifth root of the identity matrix., YouTube video, 2022.
Eric Weisstein's World of Mathematics, Golden Rectangle
Eric Weisstein's World of Mathematics, Pentagram
FORMULA
Equals 2*A019881. - Mohammed Yaseen, Nov 04 2020
Equals i^(1/5) + i^(-1/5). - Gary W. Adamson, Jul 08 2022
Equals Product_{k>=0} ((10*k + 2)*(10*k + 8))/((10*k + 1)*(10*k + 9)). - Antonio GraciĆ” Llorente, Feb 24 2024
EXAMPLE
1.902113032590307144232878666758764286811397268251...
MATHEMATICA
r = (1 + 5^(1/2))/2; RealDigits[(2 + r)^(1/2), 10, 130]][[1]]
RealDigits[Sqrt[GoldenRatio+2], 10, 130][[1]] (* Harvey P. Dale, Oct 27 2023 *)
PROG
(PARI) sqrt((5+sqrt(5))/2)
(Magma) SetDefaultRealField(RealField(100)); Sqrt((5+Sqrt(5))/2); // G. C. Greubel, Nov 02 2018
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, Apr 04 2011
STATUS
approved