login
A370347
Number T(n,k) of partitions of [3n] into n sets of size 3 having exactly k sets {3j-2,3j-1,3j} (1<=j<=n); triangle T(n,k), n>=0, 0<=k<=n, read by rows.
3
1, 0, 1, 9, 0, 1, 252, 27, 0, 1, 14337, 1008, 54, 0, 1, 1327104, 71685, 2520, 90, 0, 1, 182407545, 7962624, 215055, 5040, 135, 0, 1, 34906943196, 1276852815, 27869184, 501795, 8820, 189, 0, 1, 8877242235393, 279255545568, 5107411260, 74317824, 1003590, 14112, 252, 0, 1
OFFSET
0,4
LINKS
FORMULA
T(n,k) = binomial(n,k) * A370357(n-k).
Sum_{k=1..n} T(n,k) = A370358(n).
T(n,k) mod 9 = A023531(n,k).
EXAMPLE
T(2,0) = 9: 124|356, 125|346, 126|345, 134|256, 135|246, 136|245, 145|236, 146|235, 156|234.
T(2,2) = 1: 123|456.
Triangle T(n,k) begins:
1;
0, 1;
9, 0, 1;
252, 27, 0, 1;
14337, 1008, 54, 0, 1;
1327104, 71685, 2520, 90, 0, 1;
182407545, 7962624, 215055, 5040, 135, 0, 1;
34906943196, 1276852815, 27869184, 501795, 8820, 189, 0, 1;
...
MAPLE
b:= proc(n) option remember; `if`(n<3, [1, 0, 9][n+1],
9*(n*(n-1)/2*b(n-1)+(n-1)^2*b(n-2)+(n-1)*(n-2)/2*b(n-3)))
end:
T:= (n, k)-> b(n-k)*binomial(n, k):
seq(seq(T(n, k), k=0..n), n=0..10);
CROSSREFS
Row sums give A025035.
Column k=0 gives A370357.
T(n+1,n-1) gives A027468.
T(n+2,n-1) gives 252*A000292.
Sequence in context: A189186 A221429 A221507 * A089481 A188593 A065421
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Feb 15 2024
STATUS
approved