login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187074
a(n) = 0 if and only if n is of the form 3*k or 4*k + 2, otherwise a(n) = 1.
3
1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0
OFFSET
1,1
COMMENTS
Characteristic function of A359380, numbers that are neither multiples of 3 nor of the form 4u+2. - Antti Karttunen, Dec 31 2022
FORMULA
Euler transform of length 12 sequence [0, 0, 1, 1, 0, 0, 0, -1, -1, 0, 0, 1].
Moebius transform is length 12 sequence [1, -1, -1, 1, 0, 1, 0, 0, 0, 0, 0, -1].
a(n) is multiplicative with a(2^e) = 1 except a(2) = 0, a(3^e) = 0^e, a(p^e) = 1 if p>3.
G.f.: x * (1 + x^4) * (1 + x^3 + x^6) / (1 - x^12). a(n + 12) = a(-n) = a(n). a(3*n) = a(4*n + 2) = 0.
Dirichlet g.f. zeta(s)*(1-3^(-s))*(1+4^(-s)-2^(-s)). - R. J. Mathar, Mar 31 2011
a(n+5) = A000661(n)(mod 2). - John M. Campbell, Jul 15 2016
a(n) = A011655(n) * A152822(n). - Antti Karttunen, Dec 31 2022
EXAMPLE
x + x^4 + x^5 + x^7 + x^8 + x^11 + x^13 + x^16 + x^17 + x^19 + x^20 + ...
MATHEMATICA
PadRight[{}, 120, {1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0}] (* or *)
Table[If[MemberQ[{0, 2, 3, 6, 9, 10}, Mod[n, 12]], 0, 1], {n, 120}] (* or *)
Table[Boole@ Or[CoprimeQ[n, 12], MemberQ[{4, 8}, Mod[n, 12]]], {n, 120}] (* or *)
Rest@ CoefficientList[Series[x (1 + x^4) (1 + x^3 + x^6)/(1 - x^12), {x, 0, 121}], x] (* Michael De Vlieger, Jul 16 2016 *)
Table[Which[Mod[n, 3]==0, 0, Mod[n, 4]==2, 0, True, 1], {n, 120}] (* Harvey P. Dale, Aug 02 2021 *)
PROG
(PARI) {a(n) = [0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1][n%12 + 1]};
(PARI) {a(n) = n = abs(n); sumdiv( 12, k, (n%k == 0) * [ 1, -1, -1, 1, 0, 1, 0, 0, 0, 0, 0, -1][k] )};
(PARI) A187074(n) = ((n%3)&&(2!=(n%4))); \\ Antti Karttunen, Dec 31 2022
CROSSREFS
Characteristic function of A359380.
Cf. A000661, A011655, A152822, A359374, A359422 (Dirichlet inverse).
Sequence in context: A083035 A359422 A356161 * A188398 A288929 A285083
KEYWORD
nonn,mult
AUTHOR
Michael Somos, Mar 07 2011
STATUS
approved