login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359422
Dirichlet inverse of A187074, characteristic function of numbers that are neither multiples of 3 nor of the form 4u+2.
2
1, 0, 0, -1, -1, 0, -1, -1, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 1, 0, 0, -1, 0, 0, 0, 0, 1, -1, 0, -1, 1, 0, 0, 1, 0, -1, 0, 0, 1, -1, 0, -1, 1, 0, 0, -1, 0, 0, 0, 0, 1, -1, 0, 1, 1, 0, 0, -1, 0, -1, 0, 0, 1, 1, 0, -1, 1, 0, 0, -1, 0, -1, 0, 0, 1, 1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 1, -1, 0, 1, 1, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, -1, 1, 0
OFFSET
1
COMMENTS
Multiplicative because A187074 is.
LINKS
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A187074(n/d) * a(d).
Multiplicative with a(2^e) = A010892(e), a(3^e) = 0, and for p >= 5, a(p) = -1 and a(p^e) = 0 for e > 1. - Amiram Eldar, Jan 03 2023
MATHEMATICA
s[n_] := If[Mod[n, 3] == 0 || Mod[n, 4] == 2, 0, 1]; a[1] = 1; a[n_] := a[n] = -DivisorSum[n, a[#]*s[n/#] &, # < n &]; Array[a, 100] (* Amiram Eldar, Dec 31 2022 *)
f[p_, e_] := If[e == 1, -1, 0]; f[3, e_] := 0; f[2, e_] := {1, 1, 0, -1, -1, 0}[[Mod[e, 6] + 1]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 03 2023 *)
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Antti Karttunen, Dec 31 2022
STATUS
approved