login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185872
Accumulation array of the (odd,odd)-polka dot array A185868, by antidiagonals.
4
1, 5, 7, 16, 24, 22, 38, 59, 65, 50, 75, 120, 141, 136, 95, 131, 215, 262, 274, 245, 161, 210, 352, 440, 480, 470, 400, 252, 316, 539, 687, 770, 790, 741, 609, 372, 453, 784, 1015, 1160, 1225, 1208, 1099, 880, 525, 625, 1095, 1436, 1666, 1795, 1825, 1750, 1556, 1221, 715, 836, 1480, 1962, 2304, 2520, 2616, 2590, 2432, 2124, 1640, 946, 1090, 1947, 2605, 3090, 3420, 3605, 3647, 3540
OFFSET
1,2
COMMENTS
See A144112 for the definition of accumulation array.
FORMULA
T(n,k) = (k*n/6)*(4*n^2 + 6*n*k + 4*k^2 - 3*n - 9*k + 4), k>=1, n>=1.
EXAMPLE
Northwest corner:
1, 5, 16, 38, 75
7, 24, 59, 120, 215
22, 54, 141, 262, 440
50, 136, 174, 480, 770
MATHEMATICA
f[n_, k_]:=2n-1+(2n+2k-4)(2n+2k-3)/2;
TableForm[Table[f[n, k], {n, 1, 10}, {k, 1, 15}]] (* A185868 *)
Table[f[n-k+1, k], {n, 14}, {k, n, 1, -1}]//Flatten
s[n_, k_]:=Sum[f[i, j], {i, 1, n}, {j, 1, k}]; (* accumulation array of {f(n, k)} *)
FullSimplify[s[n, k]] (*formula for A185872 *)
g[n_]:=Sum[f[n+1-k, k], {k, 1, n}];
Table[g[n], {n, 50}] (* A185872 *)
TableForm[Table[s[n, k], {n, 1, 10}, {k, 1, 15}]]
CROSSREFS
Cf. A185868.
Row 1: A174723; column 1: A002412.
Sequence in context: A218623 A279175 A279875 * A186710 A276717 A374777
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 05 2011
STATUS
approved