login
A184389
a(n) = Sum_{k=1..tau(n)} k, where tau is the number of divisors of n (A000005).
23
1, 3, 3, 6, 3, 10, 3, 10, 6, 10, 3, 21, 3, 10, 10, 15, 3, 21, 3, 21, 10, 10, 3, 36, 6, 10, 10, 21, 3, 36, 3, 21, 10, 10, 10, 45, 3, 10, 10, 36, 3, 36, 3, 21, 21, 10, 3, 55, 6, 21, 10, 21, 3, 36, 10, 36, 10, 10, 3, 78, 3, 10, 21, 28, 10, 36, 3, 21, 10, 36, 3, 78
OFFSET
1,2
COMMENTS
Length of row n in triangle A187207. - Omar E. Pol, Aug 07 2011
Number of pairs of even divisors of 2n, (d1,d2), such that d1<=d2. - Wesley Ivan Hurt, Aug 24 2020
LINKS
Enrique PĂ©rez Herrero, Table of n, a(n) for n = 1..5000
FORMULA
a(n) = A000217(A000005(n)) = (1/2)*A000005(n)*(A000005(n)+1).
a(n) = A066446(n) + A000005(n) = A035116(n) - A066446(n). - Reinhard Zumkeller, Sep 08 2015
Dirichlet g.f.: zeta(s)^2*(zeta(s)^2 + zeta(2*s))/(2*zeta(2*s)). - Ilya Gutkovskiy, Jun 25 2016
a(n) = Sum_{d1|(2*n), d2|(2*n), d1 and d2 even, d1<=d2} 1. - Wesley Ivan Hurt, Aug 24 2020
a(n) = Sum_{d|n} A018892(d). - Daniel Suteu, Jan 08 2021
EXAMPLE
For n = 4; tau(4) = 3; a(4) = 1+2+3 = 6.
MAPLE
A184389 := proc(n)
A000217(numtheory[tau](n)) ;
end proc: # R. J. Mathar, Oct 04 2014
MATHEMATICA
((#+1)#)/2&/@DivisorSigma[0, Range[80]] (* Harvey P. Dale, Feb 27 2013 *)
PROG
(Haskell)
a184389 = a000217 . a000005' -- Reinhard Zumkeller, Sep 08 2015
(PARI) a(n) = my(nd=numdiv(n)); nd*(nd+1)/2; \\ Michel Marcus, Jun 25 2016
CROSSREFS
Cf. A000005 (tau), A000217 (triangular numbers).
Cf. A187207.
Sequence in context: A112163 A058587 A196439 * A163163 A376646 A323349
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Jan 12 2011
STATUS
approved