login
A066446
Number of unordered divisor pairs of n.
14
0, 1, 1, 3, 1, 6, 1, 6, 3, 6, 1, 15, 1, 6, 6, 10, 1, 15, 1, 15, 6, 6, 1, 28, 3, 6, 6, 15, 1, 28, 1, 15, 6, 6, 6, 36, 1, 6, 6, 28, 1, 28, 1, 15, 15, 6, 1, 45, 3, 15, 6, 15, 1, 28, 6, 28, 6, 6, 1, 66, 1, 6, 15, 21, 6, 28, 1, 15, 6, 28, 1, 66, 1, 6, 15, 15, 6, 28, 1, 45, 10, 6, 1, 66, 6, 6, 6, 28
OFFSET
1,4
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65537 (terms 1..1000 from Harry J. Smith)
FORMULA
a(p) = 1 iff p is a prime.
Combinations of d(n), the number of divisors of n (A000005), taken two at a time. If the canonical factorization of n into prime powers is Product p^e(p) then d(n) = Product (e(p) + 1). Therefore a(n) = C(d(n), 2) = d(n)*{ d(n)-1 }/2 which is a triangular number (A000217).
a(n) = A184389(n) - A000005(n) = A035116(n) - A184389(n). - Reinhard Zumkeller, Sep 08 2015
a(n) = A000217(A000005(n)-1). - Antti Karttunen, Sep 21 2018
a(n) = Sum_{k|n, i|n, i < k} 1. - Wesley Ivan Hurt, Aug 20 2020
a(n) = Sum_{d|n} A063647(d). - Ridouane Oudra, Apr 15 2023
EXAMPLE
The divisors of 6 are 1, 2, 3 & 6. In unordered pairs they are {1, 2}, {1, 3}, {1, 6}, {2, 3}, {2, 6}, & {3, 6}. Since there are six pairs, a(6) = 6. Also d(6) = 4. 4*3/2 = 6.
MAPLE
with(numtheory): seq(tau(n)*(tau(n)-1)/2, n=1..60); # Ridouane Oudra, Apr 15 2023
MATHEMATICA
Table[ Binomial[ DivisorSigma[0, n], 2], {n, 1, 100}]
PROG
(PARI) { for (n=1, 1000, a=binomial(numdiv(n), 2); write("b066446.txt", n, " ", a) ) } \\ Harry J. Smith, Feb 15 2010
(Haskell)
a066446 = a000217 . subtract 1 . a000005'
-- Reinhard Zumkeller, Sep 08 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Robert G. Wilson v, Dec 28 2001
STATUS
approved