login
A120963
Number of monic polynomials with integer coefficients of degree n with all roots on the unit circle; number of products of cyclotomic polynomials of degree n.
14
1, 2, 6, 10, 24, 38, 78, 118, 224, 330, 584, 838, 1420, 2002, 3258, 4514, 7134, 9754, 15010, 20266, 30532, 40798, 60280, 79762, 115966, 152170, 217962, 283754, 401250, 518746, 724866, 930986, 1287306, 1643626, 2250538, 2857450, 3878298, 4899146, 6594822
OFFSET
0,2
COMMENTS
Also the number of types of crystallographic rotations and reflection-rotations in n-dimensional Euclidean space. - Andrey Zabolotskiy, Jul 08 2017
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
Gaëtan Chenevier, The Characteristic Masses of Niemeier Lattices, arXiv:2002.03707 [math.NT], 2020.
Peter Engel, Louis Michel and Marjorie Senechal, Lattice Geometry, 2004 (see section 1.4.3).
Richard P. Stanley, Some enumerative applications of cyclotomic polynomials, MIT, 2024. See p. 15.
D. Weigel, R. Veysseyre, T. Phan, J. M. Effantin, and Y. Billiet, Crystallography, geometry and physics in higher dimensions. I. Point-symmetry operations, Acta Cryst., A40 (1984), 323-330 (see table 3).
FORMULA
Euler transform of A014197.
G.f.: Product_{k>=1} 1/(1-x^phi(k)) = Product_{j>=1} (1-x^j)^(-A014197(j)). - Christopher J. Smyth, Jan 08 2017
log(a(n)) ~ sqrt(105*zeta(3)*n)/Pi. - Vaclav Kotesovec, Sep 02 2021
EXAMPLE
The six polynomials of degree 2 consist of 3 irreducible cyclotomic polynomials: x^2+1, x^2+x+1 and x^2-x+1 and 3 products of 2 linear cyclotomic polynomials: x^2+2x+1, x^2-1 and x^2-2x+1.
The six plane crystallographic operations are the identity operation, rotations by 2 Pi/k with k = 2,3,4,6, and a reflection.
MAPLE
with(numtheory):
b:= proc(n) option remember; nops(invphi(n)) end:
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*add(d*b(d), d=divisors(j)), j=1..n)/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, Jul 04 2019
MATHEMATICA
terms = 40;
S[m_] := S[m] = CoefficientList[Product[1/(1 - x^EulerPhi[k]),
{k, 1, m*terms}] + O[x]^terms, x];
S[m = 1];
S[m++];
While[S[m] != S[m-1], m++];
S[m] (* Jean-François Alcover, Apr 14 2017, after Christopher J. Smyth, updated May 13 2022 *)
CROSSREFS
Cf. A014197, A051894, A280611 (variant where repeated roots are not allowed).
See also A341710, A341711, A341712.
Sequence in context: A072297 A358908 A183036 * A370587 A200220 A188224
KEYWORD
easy,nonn
AUTHOR
STATUS
approved