login
A182936
Greatest common divisor of the proper divisors of n, 0 if there are none.
4
0, 0, 0, 2, 0, 1, 0, 2, 3, 1, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 1, 0, 1, 5, 1, 3, 1, 0, 1, 0, 2, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 7, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 3, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1
OFFSET
1,4
COMMENTS
Here a proper divisor d of n is a divisor of n such that 1 < d < n.
LINKS
FORMULA
a(n) = 0 if n is not composite, p if n is a proper power of prime p, and 1 otherwise. - Franklin T. Adams-Watters, Mar 22 2011
MAPLE
A182936 := n -> igcd(op(numtheory[divisors](n) minus {1, n}));
seq(A182936(i), i=1..79); # Peter Luschny, Mar 22 2011
MATHEMATICA
Join[{0}, Table[GCD@@Most[Rest[Divisors[n]]], {n, 2, 110}]] (* Harvey P. Dale, May 04 2018 *)
PROG
(PARI) A182936(n) = { my(divs=divisors(n)); if(#divs<3, 0, gcd(vector(numdiv(n)-2, k, divs[k+1]))); }; \\ Antti Karttunen, Sep 23 2017
CROSSREFS
Cf. A048671.
Sequence in context: A329027 A235987 A104597 * A340503 A072662 A030010
KEYWORD
nonn
AUTHOR
Peter Luschny, Mar 22 2011
EXTENSIONS
More terms from Antti Karttunen, Sep 23 2017
STATUS
approved