login
A104597
Triangle T read by rows: inverse of Motzkin triangle A097609.
13
1, 0, 1, -1, 0, 1, -1, -2, 0, 1, 0, -2, -3, 0, 1, 1, 1, -3, -4, 0, 1, 1, 4, 3, -4, -5, 0, 1, 0, 3, 9, 6, -5, -6, 0, 1, -1, -2, 5, 16, 10, -6, -7, 0, 1, -1, -6, -9, 6, 25, 15, -7, -8, 0, 1, 0, -4, -18, -24, 5, 36, 21, -8, -9, 0, 1, 1, 3, -7, -39, -50, 1, 49, 28, -9, -10, 0, 1, 1, 8
OFFSET
0,8
COMMENTS
Riordan array ((1-x)/(1-x+x^2),x(1-x)/(1-x+x^2)). - Paul Barry, Jun 21 2008
LINKS
D. Merlini, R. Sprugnoli and M. C. Verri, An algebra for proper generating trees, Mathematics and Computer Science, Part of the series Trends in Mathematics pp 127-139, 2000. [alternative link]
D. Merlini, R. Sprugnoli and M. C. Verri, An algebra for proper generating trees, Colloquium on Mathematics and Computer Science, Versailles, September 2000.
FORMULA
T(n,m) = sum(j=0..m, binomial(m,j)*sum(k=0..n, binomial(k,n-k)*(-1)^(n-k)*binomial(k+j-1,j-1))*(-1)^(m-j)). - Vladimir Kruchinin, Apr 08 2011
T(n,m) = sum(k=ceiling((n-m-1)/2)..n-m, binomial(k+m,m)*binomial(k+1,n-k-m)*(-1)^(n-k-m)). - Vladimir Kruchinin, Dec 17 2011
T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), T(0,0) = T(1,1) = 1, T(1,0) = 0, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Feb 20 2013
T(n+5,n) = (n+1)^2. - Philippe Deléham, Feb 20 2013
From Tom Copeland, Nov 01 and 04 2014: (Start)
O.g.f.: G(x,t) = Pinv[Cinv(x),t+1] = Cinv(x) / [1 - (t+1)Cinv(x)] = x*(1-x) / [1-(t+1)x(1-x)] = x + t * x^2 + (-1 + t^2) * x^3 + ..., where Cinv(x)= x * (1-x) is the inverse of C(x) = [1-sqrt(1-4*x)]/2, an o.g.f. for the Catalan numbers A000108 and Pinv(x,t) = -P(-x,t) = x/(1-t*x) is the inverse of P(x,t) = x/(1+x*t).
Ginv(x,t)= C[P[x,t+1]]= C[x/(1+(t+1)x)] = {1-sqrt[1-4*x/(1+(t+1)x)]}/2.
The inverse in x of G(x,t) with t replaced by -t is the o.g.f. of A091867, and G(x,t-1) is a signed version of the (mirrored) Fibonacci polynomials A030528. (End)
EXAMPLE
1
0,1
-1,0,1
-1,-2,0,1
0,-2,-3,0,1
1,1,-3,-4,0,1
1,4,3,-4,-5,0,1
0,3,9,6,-5,-6,0,1
-1,-2,5,16,10,-6,-7,0,1
-1,-6,-9,6,25,15,-7,-8,0,1
MAPLE
# Uses function InvPMatrix from A357585. Adds column 1, 0, 0, ... to the left.
InvPMatrix(10, n -> A005043(n-1)); # Peter Luschny, Oct 09 2022
PROG
(Maxima)
T(n, m):=sum(binomial(m, j)*sum(binomial(k, n-k)*(-1)^(n-k)*binomial(k+j-1, j-1), k, 0, n)*(-1)^(m-j), j, 0, m); /* Vladimir Kruchinin, Apr 08 2011 */
CROSSREFS
Row sums are A009116 with different signs.
Row sums are A146559(n).
Sequence in context: A125079 A329027 A235987 * A182936 A340503 A072662
KEYWORD
sign,tabl
AUTHOR
Ralf Stephan, Mar 17 2005
STATUS
approved