login
A182919
Numerators of an asymptotic series for the factorial function.
3
1, 0, 1, -23, 5, 4939, 11839, -1110829, -14470283, 1684880593181, 13113784231, -28792751815367863, -40127106428444687, 97116294357644526719, 15137700541235610329, -17271137929251359193013081753, -622005606550391960056009
OFFSET
0,4
COMMENTS
G_n = A182919(n)/A182920(n). These rational numbers provide the coefficients for an asymptotic expansion of the factorial function. It is a generalization of Gosper's approximation.
LINKS
Peter Luschny, Approximations to the factorial function, Factorial Function.
Eric Weisstein's World of Mathematics, Stirling's Approximation.
FORMULA
Let G = Sum_{k>=0} G[k]/n^k, then n! ~ sqrt(2Pi(n+1/6))*(n/e)^n*G.
EXAMPLE
G_0 = 1, G_1 = 0, G_2 = 1/144, G_3 = -23/6480, G_4 = 5/41472.
MAPLE
CoefNumer := f -> numer([1, seq(coeff(convert(series(f, n=infinity, 20), polynom), n^(-k)), k=1..16)]): CoefNumer(n!/(n^n/exp(n)*sqrt(2*Pi)*sqrt(n+1/6)));
MATHEMATICA
a[n_] := SeriesCoefficient[ x!/(x^x/Exp[x]*Sqrt[2*Pi]*Sqrt[x+1/6]) /. x -> 1/y, {y, 0, n}]; Table[a[n] // Numerator, {n, 0, 16}] (* Jean-François Alcover, Feb 05 2014 *)
CROSSREFS
Cf. A182920.
Sequence in context: A281923 A040514 A098103 * A040512 A158514 A040511
KEYWORD
sign,frac
AUTHOR
Peter Luschny, Mar 11 2011
STATUS
approved