login
A182917
Denominators of an asymptotic series for the factorial function (S. Wehmeier).
3
6, 72, 6480, 155520, 6531840, 1175731200, 7054387200, 338610585600, 1005673439232000, 84476568895488000, 6589172373848064000, 2372102054585303040000, 14232612327511818240000, 170791347930141818880000, 9145876681659094401024000000
OFFSET
0,1
COMMENTS
W_n = A182916(n)/A182917(n). These rational numbers provide the coefficients for an asymptotic expansion of the factorial function. It is a generalization of Gosper's approximation.
LINKS
Peter Luschny, Approximations to the factorial function, Factorial Function.
Eric Weisstein's World of Mathematics, Stirling's Approximation.
FORMULA
Let A = Sum_{k>=0} W[k]/n^k, then n! ~ sqrt(2Pi*(n+A))*(n/e)^n.
EXAMPLE
W_0 = 1/6, W_1 = 1/72, W_2 = -31/6480, W_3 = -139/155520, W_4 = 9871/6531840.
CROSSREFS
Cf. A182916.
Sequence in context: A132878 A006585 A166472 * A328814 A203433 A008562
KEYWORD
nonn,frac
AUTHOR
Peter Luschny, Mar 09 2011
STATUS
approved