OFFSET
1,3
COMMENTS
The (i,j)-entry of the array is the coefficient of the Euler-Mascheroni constant in: -2^(i+2j-1)/Pi*int(log(x)*cos(x)^i*sin(x)^(2j-1)/x, x=0..infinity); see Mathematica code below.
First row: A000108.
Second row: -A002420.
Third row: A007054.
Fourth row: A002421.
Fifth row: A007272.
Sixth row: -A002422.
Eighth row: A002423.
First column: A001405.
Second column: A089408.
Odd entries on main diagonal: A126596.
EXAMPLE
Evaluate: -256/Pi*int(cos(x)^3*log(x)*sin(x)^5/x, x=0..infinity) = 3*eulergamma-log(9/8). Thus the (3,3) entry of the array is 3, the coefficient of the Euler-Mascheroni constant in this expression.
The array begins as:
| 1 1 2 5 14 42 132 429 ... |
| 2 2 4 10 28 84 264 858 ... |
| 3 2 3 6 14 36 99 286 ... |
| 6 4 6 12 28 72 198 572 ... |
| 10 5 6 10 20 45 110 286 ... |
| 20 10 12 20 40 90 220 572 ... |
| 35 14 14 20 35 70 154 364 ... |
| 70 28 28 40 70 140 308 728 ... |
| ... ... ... ... ... ... ... ... ... |
MATHEMATICA
A[a_, b_] :=
A[a, b] =
Array[Coefficient[
Integrate[
Log[x]*Cos[x]^#1*Sin[x]^(2 #2 - 1)/x, {x, 0,
Infinity}] (2^(#1 + 2 #2 - 1))/(-\[Pi]), EulerGamma] &, {a, b}];
A[11, 11];
Print[A[11, 11] // MatrixForm];
Table2 = {};
k = 1;
While[k < 11, Table1 = {};
i = 1;
j = k;
While[0 < j,
AppendTo[Table1,
First[Take[First[Take[A[11, 11], {i, i}]], {j, j}]]];
j = j - 1;
i = i + 1];
AppendTo[Table2, Table1];
k++];
Print[Flatten[Table2]]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
John M. Campbell, May 05 2012
STATUS
approved