login
A114639
Number of partitions of n such that the set of parts and the set of multiplicities of parts are disjoint.
22
1, 0, 2, 2, 2, 3, 5, 4, 7, 7, 13, 16, 19, 23, 33, 34, 44, 58, 63, 80, 101, 112, 139, 171, 196, 234, 288, 328, 394, 478, 545, 658, 777, 881, 1050, 1236, 1414, 1666, 1936, 2216, 2592, 3018, 3428, 3992, 4604, 5243, 6069, 6986, 7951, 9139, 10447, 11892, 13625
OFFSET
0,3
COMMENTS
The Heinz numbers of these partitions are given by A325131. - Gus Wiseman, Apr 02 2019
LINKS
EXAMPLE
From Gus Wiseman, Apr 02 2019: (Start)
The a(2) = 2 through a(9) = 7 partitions:
(2) (3) (4) (5) (6) (7) (8) (9)
(11) (111) (1111) (32) (33) (43) (44) (54)
(11111) (42) (52) (53) (63)
(222) (1111111) (62) (72)
(111111) (2222) (432)
(3311) (222111)
(11111111) (111111111)
(End)
MAPLE
b:= proc(n, i, p, m) option remember; `if`(n=0, 1,
`if`(i<1, 0, b(n, i-1, p, select(x-> x<i, m))+
add(`if`(i=j or i in m or j in p, 0, b(n-i*j, i-1,
select(x-> x<=n-i*j, p union {i}),
select(x-> x<i, m union {j}))), j=1..n/i)))
end:
a:= n-> b(n$2, {}$2):
seq(a(n), n=0..40); # Alois P. Heinz, Aug 09 2016
MATHEMATICA
b[n_, i_, p_, m_] := b[n, i, p, m] = If[n == 0, 1, If[i<1, 0, b[n, i-1, p, Select[m, #<i&]] + Sum[If[i == j || MemberQ[m, i] || MemberQ[p, j], 0, b[n-i*j, i-1, Select[ p ~Union~ {i}, # <= n-i*j&], Select[m ~Union~ {j}, #<i&]]], {j, 1, n/i}]]]; a[n_] := b[n, n, {}, {}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 05 2017, after Alois P. Heinz *)
Table[Length[Select[IntegerPartitions[n], Intersection[#, Length/@Split[#]]=={}&]], {n, 0, 30}] (* Gus Wiseman, Apr 02 2019 *)
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Feb 18 2006
EXTENSIONS
a(0)=1 prepended and more terms from Alois P. Heinz, Aug 09 2016
STATUS
approved