login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181741
Primes of the form 2^t-2^k-1, k>=1.
6
3, 5, 7, 11, 13, 23, 29, 31, 47, 59, 61, 127, 191, 223, 239, 251, 383, 479, 503, 509, 991, 1019, 1021, 2039, 3583, 3967, 4079, 4091, 4093, 6143, 8191, 15359, 16127, 16319, 16381, 63487, 65407, 65519, 129023, 131063, 131071, 245759, 253951, 261631, 261887, 262079, 262111, 262127, 262139
OFFSET
1,1
COMMENTS
All Mersenne primes A000668(i) are in the sequence, parametrized by t=A000043(i)+1 and k=A000043(i).
If p is in the sequence, then the exponents t and k are unique.
For given k, the smallest value of t defines sequence A181692.
Every term p=2^t-2^k-1 in this sequence here generates an entry 2^(t-1)*p in A181595 (cf. A181701).
LINKS
Paul Pollack and Vladimir Shevelev, On perfect and near-perfect numbers, J. Number Theory 132 (2012), pp. 3037-3046. - N. J. A. Sloane, Sep 04 2012
Vladimir Shevelev, Perfect and near-perfect numbers, arXiv:1011.6160 [math.NT], 2010-2012.
FORMULA
Conjecture: equals the intersection of A000040 and A081118 or the intersection of A000040 and A089633. [R. J. Mathar, Nov 18 2010]
MAPLE
isA000079 := proc(n) if n = 1 then true; elif type(n, 'odd') then false; else if nops( numtheory[factorset](n) ) = 1 then true; else
false; end if; end if; end proc:
isA181741 := proc(p) if isprime(p) then k := A007814(p+1) ; (p+1)/2^k+1 ; return ( isA000079(%) and k >=1 ) ; else
false; end if; end proc:
for i from 1 to 1000 do p := ithprime(i) ; if isA181741(p) then printf("%d, ", p) ; end if; end do: # R. J. Mathar, Nov 18 2010
MATHEMATICA
Select[Table[2^t-2^k-1, {t, 1, 20}, {k, 1, t-1}] // Flatten // Union, PrimeQ] (* Jean-François Alcover, Nov 16 2017 *)
PROG
(Haskell)
a181741 n = a181741_list !! (n-1)
a181741_list = filter ((== 1) . a010051) a081118_list
-- Reinhard Zumkeller, Feb 23 2012
(PARI) lista(nn) = {for (n=3, nn, forstep(k=n-1, 1, -1, if (isprime(p=2^n-2^k-1), print1(p, ", ")); ); ); } \\ Michel Marcus, Dec 17 2018
(Python)
from itertools import count, islice
from sympy import isprime
def A181741_gen(): # generator of terms
m = 2
for t in count(1):
r=1<<t-1
for k in range(t-1, 0, -1):
if isprime(s:=m-r-1):
yield s
r>>=1
m<<=1
A181741_list = list(islice(A181741_gen(), 30)) # Chai Wah Wu, Jul 08 2022
CROSSREFS
Cf. A010051, primes in A081118, see also A208083.
Sequence in context: A040140 A066651 A182583 * A350401 A154319 A080114
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Nov 08 2010
EXTENSIONS
Corrected (251 and 1019 inserted) and extended by R. J. Mathar, Nov 18 2010
STATUS
approved