login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181738
T(n, k) is the coefficient of x^k of the polynomial p(n) which is defined as the scalar part of P(n) = Q(x+1, 1, 1, 1) * P(n-1) for n > 0 and P(0) = Q(1, 0, 0, 0) where Q(a, b, c, d) is a quaternion, triangle read by rows.
2
1, 1, 1, -2, 2, 1, -8, -6, 3, 1, -8, -32, -12, 4, 1, 16, -40, -80, -20, 5, 1, 64, 96, -120, -160, -30, 6, 1, 64, 448, 336, -280, -280, -42, 7, 1, -128, 512, 1792, 896, -560, -448, -56, 8, 1, -512, -1152, 2304, 5376, 2016, -1008, -672, -72, 9, 1, -512, -5120, -5760, 7680, 13440, 4032, -1680, -960, -90, 10, 1
OFFSET
0,4
COMMENTS
The symbol '*' in the name refers to the noncommutative multiplication in Hamilton's division algebra. Traditionally Q(a, b, c, d) is written a + b*i + c*j + d*k.
LINKS
Peter Luschny, Rows 0..45, flattened
Wikipedia, Quaternion
EXAMPLE
The list of polynomials starts 1, 1 + x, -2 + 2*x + x^2, -8 - 6*x + 3*x^2 + x^3, ... and the list of coefficients of the polynomials starts:
{ 1},
{ 1, 1},
{ -2, 2, 1},
{ -8, -6, 3, 1},
{ -8, -32, -12, 4, 1},
{ 16, -40, -80, -20, 5, 1},
{ 64, 96, -120, -160, -30, 6, 1},
{ 64, 448, 336, -280, -280, -42, 7, 1},
{-128, 512, 1792, 896, -560, -448, -56, 8, 1},
{-512, -1152, 2304, 5376, 2016, -1008, -672, -72, 9, 1},
{-512, -5120, -5760, 7680, 13440, 4032, -1680, -960, -90, 10, 1}.
MATHEMATICA
Needs["Quaternions`"]
P[x_, 0 ] := Quaternion[1, 0, 0, 0];
P[x_, n_] := P[x, n] = Quaternion[x + 1, 1, 1, 1] ** P[x, n - 1];
Table[CoefficientList[P[x, n][[1]], x], {n, 0, 10}] // Flatten
PROG
(Sage)
R.<x> = QQ[]
K = R.fraction_field()
H.<i, j, k> = QuaternionAlgebra(K, -1, -1)
def Q(a, b, c, d): return H(a + b*i + c*j + d*k)
@cached_function
def P(n):
return Q(x+1, 1, 1, 1)*P(n-1) if n > 0 else Q(1, 0, 0, 0)
def p(n): return P(n)[0].numerator().list()
flatten([p(n) for n in (0..10)]) # Kudos to William Stein, Peter Luschny, Sep 14 2018
CROSSREFS
Cf. T(n,0) = A138230, A213421 (row sums).
Sequence in context: A360410 A346709 A096440 * A121350 A339262 A198569
KEYWORD
tabl,sign
EXTENSIONS
Edited by Peter Luschny, Sep 14 2018
STATUS
approved