login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346709
The numerators of the semiderivative of the Bernoulli polynomials at x = 1 and normalized by sqrt(Pi).
4
0, 2, 2, 1, -8, -5, 4, 521, -464, -97, 4068, 538019, -25064, -109923, 742588, 12637, -62495380064, -2750583611, 5567784164, 41079818933, -581458808792, -2559782104871, 68775757894628, 8079972368723417, -718938971593456, -118316122614712593, 143028688134307004
OFFSET
0,2
COMMENTS
The semiderivative is the fractional derivative of order 1/2. The Davison-Essex method is used.
REFERENCES
M. Davison and C. Essex, Fractional differential equations and initial value problems, The Mathematical Scientist, vol. 23, no. 2, pp. 108-116, 1998.
FORMULA
r(n) = Integral_{0..1}((d/dx)Bernoulli(n, x) / sqrt(1 - x)).
a(n) = numerator(r(n)).
EXAMPLE
r(n) = 0, 2, 2/3, 1/5, -8/105, -5/63, 4/77, 521/6435, -464/6435, -97/663, ...
a(n) = numerator(sdb_n(1) - sdb_n(0)), where
sdb_0(x) = 0;
sdb_1(x) = -2*sqrt(1-x);
sdb_2(x) = (-2 - 4*x)*sqrt(1-x) / 3;
sdb_3(x) = (-1 + 2*x - 6*x^2)*sqrt(1-x) / 5;
sdb_4(x) = (8 + 4*x + 108*x^2 - 120*x^3)*sqrt(1-x) / 105;
sdb_5(x) = (5 - 8*x - 6*x^2 + 100*x^3 - 70*x^4)*sqrt(1-x) / 63;
sdb_6(x) = (-12 - 6*x - 120*x^2 - 100*x^3 + 490*x^4 - 252*x^5)*sqrt(1-x) / 231.
MAPLE
r := n -> int(diff(bernoulli(n, t), t) / sqrt(1 - t), t = 0..1):
a := n -> numer(r(n)): seq(a(n), n = 0..9);
# Alternative:
fb := n -> sqrt(Pi)*fracdiff(bernoulli(n, x), x, 1/2):
seq(numer(simplify(subs(x=1, fb(n)))), n = 0..9);
CROSSREFS
Cf. A346710 (denominator), A346711, A346712, A346714, A346715.
Sequence in context: A246745 A111540 A360410 * A096440 A181738 A121350
KEYWORD
sign,frac
AUTHOR
Peter Luschny, Jul 31 2021
STATUS
approved