login
A180673
a(n) = Fibonacci(n+8) - Fibonacci(8).
5
0, 13, 34, 68, 123, 212, 356, 589, 966, 1576, 2563, 4160, 6744, 10925, 17690, 28636, 46347, 75004, 121372, 196397, 317790, 514208, 832019, 1346248, 2178288, 3524557, 5702866, 9227444, 14930331, 24157796, 39088148, 63245965, 102334134
OFFSET
0,2
COMMENTS
The a(n+1) (terms doubled) are the Kn17 sums of the Fibonacci(n) triangle A104763. See A180662 for information about these knight and other chess sums.
FORMULA
a(n) = F(n+8) - F(8) with F(n) the Fibonacci numbers A000045.
a(n) = a(n-1) + a(n-2) + 21 for n>1, a(0)=0, a(1)=13, and where 21 = F(8).
G.f.: x*(13 + 8*x)/((1 - x)*(1 - x - x^2)). - Ilya Gutkovskiy, Feb 24 2017
a(n) = 13*A000071(n+2) + 8*A000071(n+1). - Bruno Berselli, Feb 24 2017
From Colin Barker, Feb 24 2017: (Start)
a(n) = (-21 + (2^(-1-n)*((1-sqrt(5))^n*(-47+21*sqrt(5)) + (1+sqrt(5))^n*(47+21*sqrt(5)))) / sqrt(5)).
a(n) = 2*a(n-1) - a(n-3) for n>2. (End)
MAPLE
nmax:=40: with(combinat): for n from 0 to nmax do a(n):=fibonacci(n+8)-fibonacci(8) od: seq(a(n), n=0..nmax);
MATHEMATICA
Fibonacci[8 +Range[0, 40]] -21 (* G. C. Greubel, Jul 13 2019 *)
PROG
(Magma) [Fibonacci(n+8) - Fibonacci(8): n in [0..40]]; // Vincenzo Librandi, Apr 24 2011
(PARI) concat(0, Vec(x*(13+8*x)/((1-x)*(1-x-x^2)) + O(x^40))) \\ Colin Barker, Feb 24 2017
(PARI) a(n)=fibonacci(n+8)-21 \\ Charles R Greathouse IV, Feb 24 2017
(SageMath) [fibonacci(n+8)-21 for n in (0..40)] # G. C. Greubel, Jul 13 2019
(GAP) List([0..40], n-> Fibonacci(n+8)-21) # G. C. Greubel, Jul 13 2019
CROSSREFS
Cf. A131524 (Kn11), A001911 (Kn12), A006327 (Kn13), A167616 (Kn14), A180671 (Kn15), A180672 (Kn16), A180673 (Kn17), A180674 (Kn18).
Sequence in context: A292472 A081271 A190458 * A081752 A069484 A089113
KEYWORD
nonn,easy
AUTHOR
Johannes W. Meijer, Sep 21 2010
STATUS
approved