login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179527
Characteristic function of numbers in A083207.
5
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0
OFFSET
1,1
COMMENTS
a(n) = A179528(n+1) - A179528(n);
a(A083207(n)) = 1; a(A083210(n)) = 0;
a(n) = A057427(A083206(n));
let n such that a(n)=1 and m coprime to n, then a(m*n)=1, this was proved by R. Gerbicz (lemma for proving A179529(n)>0).
MATHEMATICA
ZumkellerQ[n_] := Module[{d = Divisors[n], t, ds, x}, ds = Total[d]; If[Mod[ds, 2] > 0, False, t = CoefficientList[Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]];
a[n_] := Boole[ZumkellerQ[n]];
Array[a, 105] (* Jean-François Alcover, Apr 30 2017, after T. D. Noe *)
PROG
(Other) PolyML (the leading dots are just for readability):
fun A179527(n) =
... let fun ch(m, k) =
........... if k <= m
.............. then ch(m, k+1) orelse (n mod k = 0 andalso ch(m-k, k+1))
.............. else (m = 0)
.... in if A000203(n) mod 2 = 0 andalso ch(A000203(n) div 2 - n, 1)
.......... then 1
.......... else 0
... end;
CROSSREFS
Sequence in context: A286925 A378598 A378540 * A353528 A358755 A172051
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jul 19 2010
STATUS
approved