login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179525
G.f.: A(x) = Sum_{n>=0} Product_{k=1..n} ((1+x)^k - 1).
16
1, 1, 2, 7, 33, 197, 1419, 11966, 115575, 1257718, 15223822, 202860828, 2950665011, 46516215168, 790009447590, 14379745626739, 279256447482090, 5763290215111558, 125960271446527241, 2906289188751628643, 70594767279197608011, 1800695322331687800336, 48122711251655255426539, 1344617808976210991187090, 39206731897407002624384182, 1190905492485213830900901986
OFFSET
0,3
COMMENTS
From Vít Jelínek, Feb 12 2012: (Start)
a(n) has the following combinatorial interpretations:
(1) the number of upper-triangular matrices over {0,1} having at least one '1'-entry in each row and having n '1'-entries in total. E.g., for n=2, this corresponds to these two matrices (with zeros represented as dots):
1. .1
.1 .1
(2) the number of upper-triangular matrices over {0,1} that are symmetric with respect to the northeast diagonal, have at least one '1'-entry in each row and column, have no '1'-entry on the northeast diagonal, and have 2n '1'-entries in total. For n=2, those are the two matrices
11. 1...
..1 .1..
..1 ..1.
...1
(3) the number of upper-triangular matrices over {0,1} that are symmetric with respect to the northeast diagonal, have at least one '1'-entry in each row and column, have at least one '1'-entry on the northeast diagonal, and have n '1'-entries on or above the northeast diagonal. For n=2, this corresponds to
11 1..
.1 .1.
..1
(End)
This is an example of Peter Bala's identity (cf. A158690):
Sum_{n>=0} Product_{k=1..n} (q^k - 1) = Sum_{n>=0} q^(-n^2) * Product_{k = 1..n} (q^(2*k-1) - 1) at q = 1 + x. See cross-references for other examples.
LINKS
Kathrin Bringmann, Yingkun Li, Robert C. Rhoades, Asymptotics for the number of row-Fishburn matrices, European Journal of Combinatorics, vol.41, pp.183-196, (October-2014); preprint.
Stuart A. Hannah, Sieved Enumeration of Interval Orders and Other Fishburn Structures, arXiv:1502.05340 [math.CO], (18-February-2015).
Hsien-Kuei Hwang, Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019.
Vít Jelínek, Counting general and self-dual interval orders, Journal of Combinatorial Theory, Series A, Volume 119, Issue 3, April 2012, pp. 599-614.
Sherry H. F. Yan and Yuexiao Xu, Self-dual interval orders and row-Fishburn matrices, arXiv:1111.4723 [math.CO], 2011.
FORMULA
G.f.: 1/(1 - ((1+x)-1)/((1+x) - ((1+x)^2-1)/((1+x)^2 - ((1+x)^3-1)/((1+x)^3 - ((1+x)^4-1)/((1+x)^4 - ((1+x)^5-1)/((1+x)^5 -...)))))), (continued fraction) [Paul D. Hanna, Jan 29 2012]
G.f.: Sum_{n>=0} q^(-n^2) * Product_{k=1..n} (q^(2*k-1) - 1) where q = 1+x. [Based on Peter Bala's identity in comments]
Conjecturally, a(n) is asymptotically c*n!*(12/Pi^2)^n, where c=6*sqrt(2)*exp(-Pi^2/24)/Pi^2. - Vít Jelínek, Feb 12 2012 [This is correct: see Hwang and Jin, Table 3, p. 26. - Peter Bala, Jan 31 2021]
G.f.: Q(0), where Q(k)= 1 - (1-(1+x)^(2*k+1))/(1 - (1-(1+x)^(2*k+2))/(1 - (1+x)^(2*k+2) - 1/Q(k+1))); (continued fraction). Conjecture. - Sergei N. Gladkovskii, May 13 2013
From Peter Bala, May 16 2017: (Start)
G.f.: A(x) = 1/2*( 1 + Sum_{n >= 0} (1 + x)^(n+1)*Product_{k = 1..n} ((1 + x)^k - 1) ).
Conjectural g.f.: Sum_{n >= 0} 1/(1 + x)^(n+1)*Product_{k = 1..n} (1 - 1/(1 + x)^(2*k)).
Conjectural g.f.: Sum_{n >= 0} (1 + x)^(2*n+1)*Product_{k = 1..2*n} (1 - (1 + x)^k). Cf. A158690, which has e.g.f. A(exp(x) - 1). (End)
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 33*x^4 + 197*x^5 + 1419*x^6 +...
A(x) = 1 + ((1+x)-1) + ((1+x)-1)*((1+x)^2-1) + ((1+x)-1)*((1+x)^2-1)*((1+x)^3-1) +...
Let q = 1+x, then g.f. also equals:
A(x) = 1 + (q-1)/q + (q-1)*(q^3-1)/q^4 + (q-1)*(q^3-1)*(q^5-1)/q^9 + (q-1)*(q^3-1)*(q^5-1)*(q^7-1)/q^16 + (q-1)*(q^3-1)*(q^5-1)*(q^7-1)*(q^9-1)/q^25 +...
MATHEMATICA
a[ n_] := SeriesCoefficient[ Sum[ Product[ (1 + x)^j - 1, {j, k}], {k, 0, n}], {x, 0, n}]; (* Michael Somos, Jun 27 2017 *)
PROG
(PARI) {a(n) = polcoeff(sum(i=0, n, prod(j=1, i, (1+x)^j-1, 1+x*O(x^n))), n)};
for(n=0, 30, print1(a(n), ", "))
(PARI) /* G.f. as a continued fraction: */
{a(n) = local(CF=1+x*O(x)); for(k=0, n, CF=1/((1+x)^(n-k+1)-((1+x)^(n-k+2)-1)*CF)); polcoeff(1/(1-x*CF), n, x)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = local(A=1+x, q=(1+x +x*O(x^n))); A = sum(m=0, n, q^(-m^2)*prod(k=1, m, (q^(2*k-1)-1))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) /* Sum_{n>=0} n!*Product_{k=0..n-1} [Integral (1+x)^k dx] */
{a(n) = my(A=1); A = sum(m=0, n, m! * prod(k=0, m-1, intformal((1+x)^k) +x*O(x^n)) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 16 2016
CROSSREFS
Cf. A207434 (log).
Sequence in context: A121965 A337058 A006595 * A217033 A059099 A020103
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 17 2010
STATUS
approved