login
A177329
Number of factors in the representation of n! as a product of distinct terms of A050376.
13
1, 2, 3, 4, 3, 4, 6, 6, 4, 5, 7, 8, 9, 10, 11, 12, 8, 9, 9, 11, 12, 13, 13, 14, 15, 16, 14, 15, 16, 17, 19, 21, 17, 16, 15, 16, 17, 18, 19, 20, 22, 23, 21, 21, 21, 22, 23, 22, 23, 25, 22, 23, 22, 24, 26, 28, 28, 29, 27, 28, 29, 30, 32, 34, 30, 31, 31, 28, 27, 28, 29, 30, 31, 33, 31, 31, 30
OFFSET
2,2
REFERENCES
Vladimir S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 [Russian].
LINKS
Chai Wah Wu, Table of n, a(n) for n = 2..10000 (terms 2..1000 from Amiram Eldar)
Simon Litsyn and Vladimir Shevelev, On factorization of integers with restrictions on the exponent, INTEGERS: Electronic Journal of Combinatorial Number Theory, 7 (2007), #A33, 1-36.
FORMULA
a(n) = Sum_{i} A000120(e_i), where n! = Product_{i} p_i^e_i is the prime factorization of n!.
a(n) = A064547(n!). - R. J. Mathar, May 28 2010
MAPLE
read("transforms") ; A064547 := proc(n) f := ifactors(n)[2] ; a := 0 ; for p in f do a := a+wt(op(2, p)) ; end do: a ; end proc:
A177329 := proc(n) A064547(n!) ; end proc: seq(A177329(n), n=2..80) ; # R. J. Mathar, May 28 2010
MATHEMATICA
f[p_, e_] := DigitCount[e, 2, 1]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n!]; Array[a, 100, 2] (* Amiram Eldar, Aug 24 2024 *)
PROG
(Python)
from collections import Counter
from sympy import factorint
def A177329(n): return sum(map(int.bit_count, sum((Counter(factorint(i)) for i in range(2, n+1)), start=Counter()).values())) # Chai Wah Wu, Jul 18 2024
(PARI) a(n) = vecsum(apply(x -> hammingweight(x), factor(n!)[, 2])); \\ Amiram Eldar, Aug 24 2024
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, May 06 2010
EXTENSIONS
I inserted one omitted term: a(20)=10. Vladimir Shevelev, May 08 2010
Terms from a(14) onwards replaced according to the formula - R. J. Mathar, May 28 2010
STATUS
approved