login
A176525
Fermi-Dirac semiprimes: products of two distinct terms of A050376.
6
6, 8, 10, 12, 14, 15, 18, 20, 21, 22, 26, 27, 28, 32, 33, 34, 35, 36, 38, 39, 44, 45, 46, 48, 50, 51, 52, 55, 57, 58, 62, 63, 64, 65, 68, 69, 74, 75, 76, 77, 80, 82, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 100, 106, 111, 112, 115, 116, 117, 118, 119, 122
OFFSET
1,1
COMMENTS
The sequence essentially differs from A000379 beginning with a(108)=212 (not 210). All squarefree terms of A001358 are in the sequence.
REFERENCES
Vladimir S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences, Vol. 4 (1996), pp. 28-43 [Russian].
LINKS
Simon Litsyn and Vladimir S. Shevelev, On factorization of integers with restrictions on the exponent, INTEGERS: Electronic Journal of Combinatorial Number Theory, Vol. 7 (2007), Article #A33, pp. 1-36.
FORMULA
If a(n)=u*v, u<v, u,v are distinct terms of A050376 "Fermi-Dirac primes", then A064380(a(n))=a(n)-u-v+1+Sum{i>=1}(-1)^(i-1)*floor(v/u^i).
MATHEMATICA
Select[Range[120], Plus @@ DigitCount[Last /@ FactorInteger[#], 2, 1] == 2 &] (* Amiram Eldar, Nov 27 2020 *)
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Apr 19 2010, Apr 20 2010
EXTENSIONS
Effectively duplicate content (due to duplicate referenced sequence) removed by Peter Munn, Dec 19 2019
STATUS
approved