login
A175011
Triangle read by rows, antidiagonals of an array generated from INVERT transforms of variants of (1, 2, 3, ...).
2
1, 1, 2, 1, 2, 5, 1, 2, 2, 16, 1, 2, 2, 5, 45, 1, 2, 2, 2, 12, 125, 1, 2, 2, 2, 5, 24, 341, 1, 2, 2, 2, 2, 12, 48, 918, 1, 2, 2, 2, 2, 7, 18, 97, 2453, 1, 2, 2, 2, 2, 2, 16, 28, 195, 6515
OFFSET
1,3
COMMENTS
Row sums = A001906, the even-indexed Fibonacci numbers starting (1, 3, 8, 21, ...).
FORMULA
Given S(x) = (1 + 2x + 3x^2 + ...), where (1, 2, 3, ...) = the INVERTi transform of (1, 3, 8, 21, 55, ...); k-th row of the array = INVERT transform of S(x^k). Take finite differences of array columns starting from the topmost "1"; becoming rows of the triangle.
EXAMPLE
First few rows of the array:
1, 3, 8, 21, 55, 144, 377, 987, 2584, ...
1, 1, 3, 5, 10, 19, 36, 69, 131, ...
1, 1, 1, 3, 5, 7, 12, 21, 34, ...
1, 1, 1, 1, 3, 5, 7, 9, 16, ...
1, 1, 1, 1, 1, 3, 5, 7, 9, ...
1, 1, 1, 1, 1, 1, 3, 5, 7, ...
...
Taking finite differences from the bottom to top starting with the last "1" we obtain triangle A175011:
1;
1, 2;
1, 2, 5;
1, 2, 2, 16;
1, 2, 2, 5, 45;
1, 2, 2, 2, 12, 125;
1, 2, 2, 2, 5, 24, 341;
1, 2, 2, 2, 2, 12, 48, 918;
1, 2, 2, 2, 2, 7, 18, 97, 2453;
1, 2, 2, 2, 2, 2, 16, 28, 195, 6515;
...
CROSSREFS
Cf. A001906.
Sequence in context: A011404 A002211 A308947 * A211700 A171840 A132309
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Apr 03 2010
STATUS
approved