login
A211700
T(n,k)=Number of nonnegative integer arrays of length n+2k-2 with new values introduced in order 0 upwards and every value appearing only in runs of at least k
7
1, 1, 2, 1, 2, 5, 1, 2, 3, 15, 1, 2, 3, 6, 52, 1, 2, 3, 4, 11, 203, 1, 2, 3, 4, 7, 23, 877, 1, 2, 3, 4, 5, 12, 47, 4140, 1, 2, 3, 4, 5, 8, 19, 103, 21147, 1, 2, 3, 4, 5, 6, 13, 33, 226, 115975, 1, 2, 3, 4, 5, 6, 9, 20, 59, 518, 678570, 1, 2, 3, 4, 5, 6, 7, 14, 29, 102, 1200, 4213597, 1, 2, 3, 4
OFFSET
1,3
LINKS
Beáta Bényi, Toufik Mansour, and José L. Ramírez, Set partitions and non-crossing partitions with l-neighbors and l-isolated elements, Australasian J. Comb. (2022) Vol. 84, No. 2, 325-340.
EXAMPLE
Table starts
..........1.....1....1...1...1...1..1..1..1..1..1..1..1..1
..........2.....2....2...2...2...2..2..2..2..2..2..2..2..2
..........5.....3....3...3...3...3..3..3..3..3..3..3..3..3
.........15.....6....4...4...4...4..4..4..4..4..4..4..4..4
.........52....11....7...5...5...5..5..5..5..5..5..5..5..5
........203....23...12...8...6...6..6..6..6..6..6..6..6..6
........877....47...19..13...9...7..7..7..7..7..7..7..7..7
.......4140...103...33..20..14..10..8..8..8..8..8..8..8..8
......21147...226...59..29..21..15.11..9..9..9..9..9..9..9
.....115975...518..102..45..30..22.16.12.10.10.10.10.10.10
.....678570..1200..182..73..41..31.23.17.13.11.11.11.11.11
....4213597..2867..334.118..59..42.32.24.18.14.12.12.12.12
...27644437..6946..608.185..89..55.43.33.25.19.15.13.13.13
..190899322.17234.1121.294.136..75.56.44.34.26.20.16.14.14
.1382958545.43393.2109.480.205.107.71.57.45.35.27.21.17.15
All solutions for n=5 k=4
..0....0....0....0....0
..0....0....0....0....0
..0....0....0....0....0
..0....0....0....0....0
..1....0....0....0....0
..1....0....0....0....1
..1....0....1....0....1
..1....0....1....1....1
..1....0....1....1....1
..1....0....1....1....1
..1....0....1....1....1
CROSSREFS
Cf. A000110 (column 1), A211694 (column 2), A211695 (column 3).
Sequence in context: A002211 A308947 A175011 * A171840 A132309 A144224
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Apr 19 2012
STATUS
approved