login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173945
a(n) = numerator of (Pi^2)/2 - Zeta(2,(2*n-1)/2), where Zeta is the Hurwitz Zeta function.
18
0, 4, 40, 1036, 51664, 469876, 57251896, 9723595324, 1951933472, 565732015028, 204698374253288, 205082390523068, 108657935761675952, 13600159324521635284, 122539685111374820056, 103156660296672018389596
OFFSET
1,2
LINKS
FORMULA
a(n) = numerator of (Zeta(2, 1/2) - Zeta(2, n-1/2)), where Zeta is the Hurwitz Zeta function. - Peter Luschny, Nov 14 2017
a(n) = numerator of Sum_{k=0..(n-2)} 4/(2*k+1)^2. - G. C. Greubel, Aug 23 2018
MAPLE
A173945 := n -> numer(add((k+1/2)^(-2), k=0..n-2)):
seq(A173945(n), n=1..16); # Peter Luschny, Nov 14 2017
MATHEMATICA
Table[Numerator[Pi^2/2 - Zeta[2, x/2]], {x, 1, 40, 2}] (* or *)
a[n_] := Numerator[Sum[(k+1/2)^(-2), {k, 0, n-2}]]; Table[a[n], {n, 1, 16}] (* Peter Luschny, Nov 14 2017 *)
PROG
(PARI) for(n=1, 20, print1(numerator(sum(k=0, n-2, 4/(2*k+1)^2)), ", ")) \\ G. C. Greubel, Aug 23 2018
(Magma) [0] cat [Numerator((&+[4/(2*k+1)^2: k in [0..n-2]])): n in [2..20]]; // G. C. Greubel, Aug 23 2018
CROSSREFS
For the denominators see A120268.
Sequence in context: A321526 A361057 A013108 * A111846 A290000 A363423
KEYWORD
nonn,frac
AUTHOR
Artur Jasinski, Mar 03 2010
STATUS
approved