login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290000
a(n) = Product_{k=1..n-1} (3^k + 1).
4
1, 1, 4, 40, 1120, 91840, 22408960, 16358540800, 35792487270400, 234870301468364800, 4623187014103292723200, 272999193182799435304960000, 48361261073946554365403054080000, 25701205307660304745058529866383360000, 40976048450930207702360695570691784048640000
OFFSET
0,3
LINKS
FORMULA
G.f. A(x) satisfies: A(x) = 1 + x * A(3*x) / (1 - x).
G.f.: Sum_{k>=0} 3^(k*(k - 1)/2) * x^k / Product_{j=0..k-1} (1 - 3^j*x).
a(0) = 1; a(n) = Sum_{k=0..n-1} 3^k * a(k).
a(n) ~ c * 3^(n*(n - 1)/2), where c = Product_{k>=1} (1 + 1/3^k) = 1.564934018567011537938849... = A132324.
a(n) = 3^(binomial(n+1,2))*(-1/3;1/3)_{n}, where (a;q)_{n} is the q-Pochhammer symbol. - G. C. Greubel, Feb 21 2021
MATHEMATICA
Table[Product[3^k + 1, {k, 1, n - 1}], {n, 0, 14}]
PROG
(PARI) a(n) = prod(k=1, n-1, 3^k + 1); \\ Michel Marcus, Jun 06 2020
(Sage)
from sage.combinat.q_analogues import q_pochhammer
[1]+[3^(binomial(n, 2))*q_pochhammer(n-1, -1/3, 1/3) for n in (1..20)] # G. C. Greubel, Feb 21 2021
(Magma)
[n lt 3 select 1 else (&*[3^j +1: j in [1..n-1]]): n in [1..20]]; // G. C. Greubel, Feb 21 2021
CROSSREFS
Sequences of the form Product_{j=1..n-1} (m^j + 1): A000012 (m=0), A011782 (m=1), A028362 (m=2), this sequence (m=3), A309327 (m=4).
Sequence in context: A013108 A173945 A111846 * A363423 A102922 A139688
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 06 2020
STATUS
approved