login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172202
Number of ways to place 3 nonattacking kings on a 3 X n board.
7
0, 0, 8, 34, 105, 248, 490, 858, 1379, 2080, 2988, 4130, 5533, 7224, 9230, 11578, 14295, 17408, 20944, 24930, 29393, 34360, 39858, 45914, 52555, 59808, 67700, 76258, 85509, 95480, 106198, 117690, 129983, 143104, 157080, 171938, 187705
OFFSET
1,3
FORMULA
a(n) = (n-2)*(9*n^2 - 45*n + 70)/2, n>=2.
G.f.: x^3*(8+2*x+17*x^2)/(1-x)^4. - Vaclav Kotesovec, Mar 24 2010
E.g.f.: 70 + 17*x + (1/2)*(-140 + 106*x - 36*x^2 + 9*x^3)*exp(x). - G. C. Greubel, Apr 29 2022
MATHEMATICA
CoefficientList[Series[x^2*(8+2*x+17*x^2)/(1-x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, May 27 2013 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 0, 8, 34, 105}, 40] (* Harvey P. Dale, Oct 07 2023 *)
PROG
(Magma) [0] cat [(n-2)*(9*n^2-45*n+70)/2: n in [2..50]]; // G. C. Greubel, Apr 29 2022
(SageMath) [(1/8)*(n-2)*(9*(2*n-5)^2+55) +17*bool(n==1) for n in (1..50)] # G. C. Greubel, Apr 29 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Jan 29 2010
EXTENSIONS
More terms from Vincenzo Librandi, May 27 2013
STATUS
approved