Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Oct 07 2023 16:06:41
%S 0,0,8,34,105,248,490,858,1379,2080,2988,4130,5533,7224,9230,11578,
%T 14295,17408,20944,24930,29393,34360,39858,45914,52555,59808,67700,
%U 76258,85509,95480,106198,117690,129983,143104,157080,171938,187705
%N Number of ways to place 3 nonattacking kings on a 3 X n board.
%H Vincenzo Librandi, <a href="/A172202/b172202.txt">Table of n, a(n) for n = 1..1000</a>
%H Vaclav Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Number of ways of placing non-attacking queens and kings on boards of various sizes</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F a(n) = (n-2)*(9*n^2 - 45*n + 70)/2, n>=2.
%F G.f.: x^3*(8+2*x+17*x^2)/(1-x)^4. - _Vaclav Kotesovec_, Mar 24 2010
%F E.g.f.: 70 + 17*x + (1/2)*(-140 + 106*x - 36*x^2 + 9*x^3)*exp(x). - _G. C. Greubel_, Apr 29 2022
%t CoefficientList[Series[x^2*(8+2*x+17*x^2)/(1-x)^4, {x, 0, 50}], x] (* _Vincenzo Librandi_, May 27 2013 *)
%t LinearRecurrence[{4,-6,4,-1},{0,0,8,34,105},40] (* _Harvey P. Dale_, Oct 07 2023 *)
%o (Magma) [0] cat [(n-2)*(9*n^2-45*n+70)/2: n in [2..50]]; // _G. C. Greubel_, Apr 29 2022
%o (SageMath) [(1/8)*(n-2)*(9*(2*n-5)^2+55) +17*bool(n==1) for n in (1..50)] # _G. C. Greubel_, Apr 29 2022
%Y Cf. A047659, A061989, A061996.
%K nonn,easy
%O 1,3
%A _Vaclav Kotesovec_, Jan 29 2010
%E More terms from _Vincenzo Librandi_, May 27 2013