login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053298
Partial sums of A027964.
4
1, 8, 34, 107, 281, 654, 1397, 2801, 5353, 9859, 17643, 30869, 53062, 89951, 150833, 250780, 414210, 680665, 1114160, 1818310, 2960806, 4813018, 7814074, 12674542, 20544191, 33283434, 53902532, 87272241, 141273663, 228658744
OFFSET
0,2
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.
FORMULA
a(n) = 3*F(n+10) + F(n+9) - (3*n^4 + 58*n^3 + 489*n^2 + 2234*n + 4752)/24, where F(.) are the Fibonacci numbers (A000045).
a(n) = a(n-1) + a(n-2) + (3*n+4)*C(n+3, 3)/4.
G.f.: (1 + 2*x)/((1 - x - x^2)*(1 - x)^5). - R. J. Mathar, Nov 28 2008
MATHEMATICA
LinearRecurrence[{6, -14, 15, -5, -4, 4, -1}, {1, 8, 34, 107, 281, 654, 1397}, 30] (* Harvey P. Dale, May 09 2018 *)
CoefficientList[Series[(1+2x)/((1-x-x^2)(1-x)^5), {x, 0, 50}], x] (* G. C. Greubel, May 24 2018 *)
PROG
(PARI) x='x+O('x^30); Vec((1+2*x)/((1-x-x^2)*(1-x)^5)) \\ G. C. Greubel, May 24 2018
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*x)/((1-x-x^2)*(1-x)^5))); // G. C. Greubel, May 24 2018
CROSSREFS
Cf. A027964 and A000204.
A column in triangular array A027960.
Cf. A137176 (row k=5).
Sequence in context: A066804 A033455 A172202 * A196311 A196284 A196334
KEYWORD
nonn,easy
AUTHOR
Barry E. Williams, Mar 04 2000
STATUS
approved